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Emergence of collective oscillations in adaptive
cells
Shou-Wen Wang 1,2,3* & Lei-Han Tang 1,4,5*

Collective oscillations of cells in a population appear under diverse biological contexts.

Here, we establish a set of common principles by categorising the response of individual cells

against a time-varying signal. A positive intracellular signal relay of sufficient gain from

participating cells is required to sustain the oscillations, together with phase matching.

The two conditions yield quantitative predictions for the onset cell density and frequency

in terms of measured single-cell and signal response functions. Through mathematical

constructions, we show that cells that adapt to a constant stimulus fulfil the phase

requirement by developing a leading phase in an active frequency window that enables cell-

to-signal energy flow. Analysis of dynamical quorum sensing in several cellular systems with

increasing biological complexity reaffirms the pivotal role of adaptation in powering oscilla-

tions in an otherwise dissipative cell-to-cell communication channel. The physical conditions

identified also apply to synthetic oscillatory systems.
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Homogeneous cell populations are able to exhibit a rich
variety of organised behaviour, among them periodic
oscillations. During mound formation of starved social

amoebae, cyclic AMP waves guide migrating cells towards the
high density region1–5. Elongation of the vertebrate body axis
proceeds with a segmentation clock6,7. Multicellular pulsation has
also been observed in nerve tissues8, during dorsal closure in late
stage drosophila embryogenesis9–12, and more13. In these exam-
ples, communication through chemical or mechanical signals is
essential to activate quiescent cells. Dubbed dynamical quorum
sensing (DQS) to emphasise the role of increased cell density in
triggering the auto-induced oscillations, this class of behaviour
lies outside the well-known Kuramoto paradigm of oscillator
synchronisation14,15.

Interestingly, auto-induced oscillations have also been reported
in situations without an apparent biological function. A case in
point is otoacoustic emission (OAE), where a healthy human ear
emits sound spontaneously in a silent environment16,17. Anato-
mically, sound is generated by hair bundles, the sensory units of
hair cells that detect sound with ultra-high sensitivity18–20.
Another example is glycolytic oscillations of yeast cells which can
be induced across different laboratory conditions21–26. This type
of phenotypic behaviour may not confer benefits to the organism,
so their existence is puzzling.

Here, we consider a population of cells attempting to modulate
temporal variations of the extracellular concentration of a protein
or analyte, or a physical property of their environment, by
responding to it. The response of a cell to the external property,
or signal, can be mediated by an arbitrary intracellular bio-
chemical network. By focusing on the frequency-resolved cellular
response, we report a generic condition for collective oscillations
to emerge, and show that it is satisfied when cells affect the signal
in a way that adapts to slow environmental variations, i.e., cells
respond to signal variation rather than to its absolute level. In
particular, we prove the existence of an active frequency regime,
where adaptive cells anticipate signal variation and attempt to
amplify the signal. Sustained collective oscillations emerge when a
cell population, beyond a critical density, communicates spon-
taneously through such a channel.

We provide a physical explanation of oscillations in terms of
energy-driven processes, with adaptive cells outputting energy in
the active frequency regime upon stimulation. For mechanical
signals, the energy output is directly observable as work on the
environment. For chemical signals, chemical free energy is
transferred during the release of molecules into the extracellular
medium. Together with the measurable response of individual
cells, quantitative predictions of the oscillation frequency and its
dependence on cell density become possible.

The adaptive cellular response highlighted in this work is
shown to underlie several known examples of DQS, and possibly
glycolytic oscillations in yeast cell suspensions. The ubiquity of
adaptation27–37 in biology may also explain the emergence of
inadvertent oscillations. We discuss implications and predictions
of this general mechanism at the end of the paper, in connection
with previous experimental and modelling work.

Results
Necessary conditions for auto-induced oscillations. We begin
by considering a scenario of mechanical oscillations, as illustrated
in Fig. 1a. Later we will show that the same results hold for
chemical oscillations. The cells are spatially close enough so that
they could be regarded as under the same environment. Here, the
extracellular signal s is taken to be the deformation of the
mechanical environment, which is both sensed and modified by
participating cells. The cell activity that affects the environment

is denoted by a variable a. Its dynamics is controlled by an
unspecified intracellular regulatory network that responds to s
through a mechanical sensor. To see how the intracellular
activities might disrupt stasis in an equilibrium state of s, we
consider the following Langevin equation:

γ_s ¼ FðsÞ þ
XN
j¼1

α1aj þ ξ: ð1Þ

Here γ is the friction coefficient, FðsÞ the external force that tries
to restore the physical environment, ξ the thermal noise, and the
sum represents the total force created by N active cells in a unit
volume, whose strength is set by α1 > 0. In general, the cell
activity depends on the past history of the signal. Upon a small
change of s, the average response of the activity of jth cell satisfies

hajðtÞi ¼ hajiu þ
Z t

�1
Raj

ðt � τÞhsðτÞidτ; ð2Þ

with h�i and h�iu denoting noise average with and without an
external time-varying signal, respectively. Without loss of
generality, we set the stationary activity hajiu to zero. The activity
response function Ra is a property of the intracellular molecular
network, which can be computed for specific models38,39 or
measured directly in single-cell experiments3,4,19,40. In general, Ra
may depend on the ambient signal level s of the cell.

The shared signal s offers a means to synchronise the activities
of cells. We derive here a matching condition for s and the a’s
to enter a positive signal relay. Expressing Eq. (2) in Fourier
form, we have h~ajðωÞi ¼ ~Raj

ðωÞh~sðωÞi. For weak disturbances, the
restoring force in Eq. (1) can be approximated by a linear one, i.e.,
FðsÞ ’ �Ks. Consequently, h~sðωÞi ¼ PN

j¼1α1~RsðωÞh~ajðωÞi, where
~Rs ¼

1
K � iγω

ð3Þ

is the signal response function, with i the imaginary unit. For
identical cells, these equations yield an oscillatory solution
~aðωoÞ ≠ 0 provided Nα1~RaðωoÞ~RsðωoÞ ¼ 1. To gain more insight,
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Fig. 1 Spontaneous oscillations in a communicating cell population. a The
scenario of mechanical oscillations where cells communicate via a shared
displacement s of the physical environment. Activity a of a cell against the
displacement is regulated by a hidden intracellular network which responds
to s through a mechanical sensor. b Illustration of chemical oscillations
where cells interact via a shared extracellular signal s. The signal is sensed
and secreted by individual cells.
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we express the two response functions in their amplitudes and
phase shifts, i.e. ~Ra � j~Raj expð�iϕaÞ and ~Rs � j~Rsj expð�iϕsÞ.
Then, the cell density N ¼ No and the selected frequency ωo at
the onset of collective oscillations are determined by,

ϕaðωoÞ ¼ �ϕsðωoÞ; ð4Þ

j~RaðωoÞ~RsðωoÞj ¼ ðα1NoÞ�1: ð5Þ
These are essentially conditions of linear instability for the
quiescent state expressed in terms of the single-cell and signal
response functions, and constitute our first main result. For
inhomogeneous cell populations, one simply replaces Ra by its
population average Ra � N�1PN

j¼1Raj
.

Under the assumption of additive signal release from
individual cells as expressed by Eq. (1), we now have a
mathematical prediction for the onset density No and oscillation
frequency ωo. Let α2 � j~Raj be the sensitivity of the cell activity
against s. We introduce a signal relay efficiency N � Nα1α2,
which also sets the coupling strength of cellular activities through
the signal. Oscillations start at the critical coupling strength
No ¼ Noα1α2. Eq. (5) simply states that, at the selected frequency
ωo, signal amplification through the collective action of No cells
compensates signal loss from dissipative forces acting on s, e.g.,
friction for a mechanical signal or degradation/dilution for a
chemical signal. The frequency ωo is chosen such that phase shifts
incurred in the forward and reverse medium-cell transmissions
match each other (Eq. (4)).

Although we mainly focus on the emergence of collective
oscillations as cell density increases, oscillation death at high
cell densities through a continuous transition, as observed in
certain experimental systems, may also fulfil the self-consistency
condition (Eqs. (4–5)). An example is provided in Supplementary
Note 6 (see also Supplementary Fig. 15), where, due to the
nonlinear properties of the intracellular circuit, the cell activity
becomes less responsive at elevated signal intensity. To make use
of our procedure, the cell-density dependence of the linear
response functions needs to be considered.

Cell-to-signal energy flow. Auto-induced collective oscillations
must be driven by intracellular active processes. These active
components of the system give a nonequilibrium character to the
activity response41–44 and furthermore enable energy flow from
the cell to the signal upon periodic stimulation, an interesting
physical phenomenon left unnoticed so far.

To set the stage, we turn to basic considerations of non-
equilibrium thermodynamics45,46. The shared signal s as illustrated
in Fig. 1 typically follows a dissipative dynamics such as Eq. (1).
When the medium is close to thermal equilibrium, the Fluctuation-
Dissipation Theorem (FDT) relates the imaginary component ~R00

s

of the signal response ~Rs to its spontaneous fluctuation ~Cs induced
by thermal noise38,39,47: 2T~R00

s ðωÞ ¼ ω~CsðωÞ, where ~CsðωÞ ¼
hj~sðωÞj2iu is the spectral amplitude of the signal, and T is the
temperature. This relation demands ~R00

s ðωÞ to be positive at all
frequencies. Hence, the dissipative nature of the physical environ-
ment translates into a phase delay, i.e., ϕs � � argð~RsÞ 2 ð�π; 0Þ.
Under the over-damped signal dynamics (Eq. (1)), Eq. (3) gives

ϕsðωÞ � � arg ~RsðωÞ
� � ¼ �tan�1ðωτsÞ 2 � π

2
; 0

� �
; ð6Þ

where τs ¼ γ=K is the signal relaxation time. (The situation
�π < ϕsðωÞ < � π=2 occurs at high frequencies when the
dynamics of s is underdamped.) On the other hand, a leading
phase as required by Eq. (4) for the intracellular signal relay
violates the FDT. In the present case, active cells play the role of the

out-of-equilibrium partner. We have calculated the work done by
one of the cells on the signal when the latter oscillates at a
frequency ω (see Supplementary Note 1). The output power
_W � h_s � α1ai, i.e., the averaged value of the product between
signal velocity (_s) and force from an individual cell (α1a), is given
by

_W ’ �α1ω~R
00
aðωÞhj~sðωÞj2i

¼ α1ωj~RaðωÞj sin ϕaðωÞhj~sðωÞj2i:
ð7Þ

The energy flux is positive, i.e., flowing from the cell to the signal,
when a has a phase lead over s, re-affirming Eq. (4) as a necessary
condition on thermodynamic grounds. Stimulated energy release
from an active cell to the signal as expressed by Eq. (7) constitutes
our second main result in this paper.

Eq. (7) can also be used to calculate the energy flux for an
arbitrary signal time series sðtÞ, provided the linear response
formula Eq. (2) applies. In particular, thermal fluctuations of s in
the quiescent state may activate a net cell-to-signal energy flow.
The total power is obtained by integrating contributions from all
frequencies. Previous experiments from Hudspeth lab yielded a
phase-leading response of hair bundles to mechanical stimulation
at low frequencies19. The same group also showed that energy can
be extracted from the hair bundle via a slowly oscillating
stimulus18.

Chemical oscillations. The criteria given by Eqs. (4–5) apply
equally to chemical oscillations illustrated in Fig. 1b. In contrast
to the mechanical system, Eq. (1) at γ ¼ 1 becomes a rate
equation for the extracellular concentration s of the signalling
molecules. The term FðsÞ (negative) gives the degradation or
dilution rate of s in the medium, while individual cells secrete the
molecules at a rate proportional to their activity a. As the sig-
nalling molecules are constantly produced and degraded, che-
mical equilibrium is often violated even in the steady state.
Nevertheless, FðsÞ usually plays the role of a stabilising force so
that the signal response function ~RsðωÞ has the same phase-lag
behaviour as the mechanical case. Release of the molecules by the
communicating cells must be phase-leading so as to drive oscil-
latory signalling.

Adaptive cells show phase-leading response. Apart from the
aforementioned hair bundles, phase-leading response to a low
frequency signal has also been reported in the activity of E. coli
chemoreceptors40 and in the osmo-response in yeast36. Interest-
ingly, all three of these cases are examples of adaptive sensory
systems whose response to a step signal at t ¼ 0 is shown in
Fig. 2a. The small activity shift ϵ at long times is known as the
adaptation error. Figure 2b shows the response of the same sys-
tem under a sinusoidal signal. The low frequency response
exhibits a phase lead while the high frequency one has a phase lag.
Below, we show that the sign switch in the phase shift of an
adaptive variable is an inevitable consequence of causality.

From the causality condition Raðt < 0Þ ¼ 0, the real (~R0
a) and

imaginary (~R00
a) part of the response function in frequency space

satisfy the Kramers-Krönig relation48:

~R0
aðωÞ ¼

2
π

Z 1

0

~R00
aðω1Þ

ω1

ω2
1 � ω2

dω1: ð8Þ

For a step signal of unit strength, Eq. (2) yields

ϵ ¼ hað1Þi � haiu ¼
Z 1

0
RaðτÞdτ ¼ lim

ω!0
~R0
aðωÞ: ð9Þ

Comparing Eqs. (8) and (9) in the limit ω ! 0 and assuming ϵ to
be sufficiently small, we see that ~R00

aðωÞ inside the integral must
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change sign. In other words, both phase-leading (~R00
a < 0) and

lagged (~R00
a > 0) behaviour are present across the frequency

domain. This is our third result.
Adaptation plays a key role in biochemical networks27,28, and

especially in sensory systems20,29,31–36. Connection between
adaptation and collective oscillations has been implicated in
previous works4,49,50. With the mathematical results presented
above, the pathway from adaptation to phase-leading response,
and onto collective oscillations through signal relay, is firmly
established (See “Methods”). Below we illustrate, with the help of
three examples of increasing complexity, how this line of
reasoning could link up different aspects of system behaviour to
arrive at a renewed understanding. Implications of our model
study to experimental work are given in the “Discussion” section.

A weakly nonlinear model with adaptation. We consider first a
noisy two-component circuit which is a variant of the model for
sensory adaptation in E. coli41 (Fig. 3a, see also “Methods”). For
weak noise, the intracellular signal relay in the quiescent state is
essentially linear with the receptor response function given by

~RaðωÞ ¼ α2 1þ ϵ

ϵ2 þ ðτyωÞ2
þ iτaω

� ðω�=ωÞ � ðω=ω�Þ
1þ ðϵ=ðτyωÞÞ2

" #�1

;

ð10Þ
where

ω� ¼ ðτaτyÞ�1=2ð1� ϵ2τa=τyÞ1=2: ð11Þ
Here τa and τy are the timescales for the activity (a) and negative
feedback (y) dynamics, respectively. In Figs. 3b, c, we show the
phase shift ϕaðωÞ and the real and imaginary part of ~RaðωÞ
against the frequency ω, plotted on semi-log scale. As predicted,
ϕaðωÞ undergoes a sign change at ω�. Correspondingly, the
imaginary component of the response ~R00

a becomes negative in the
phase-leading regime, violating the FDT. The peak of j~RaðωÞj is
located close to ω�, with a relative width Δω=ω� ’ Q�1 where
Q ¼ τaω

� ’ ðτa=τyÞ1=2.
Allowing the chemoreceptor activity a to affect the signal as in

Eq. (1) with FðsÞ ¼ �Ks, we observe an oscillatory phase upon
increase in cell density in numerical simulations (Fig. 3d).
Figure 3e shows the oscillation amplitude (upper panel) and
frequency (lower panel) against the coupling strength N around
the onset of oscillations. The threshold coupling strength No ¼
Noα1α2 and the onset frequency ωo both agree well with
the values predicted by Eqs. (4)–(5) (see arrows in Fig. 3e).
The transition is well described by a supercritical Hopf
bifurcation. At finite oscillation amplitudes, there is a downward
shift of the oscillation frequency which can be quantitatively

calculated in the present case by introducing a renormalised
response function ~R

þ
a ðωÞ (see Supplementary Note 2), whose

phase is shown in Fig. 3f. The oscillation frequency is determined
by the crossing of the two curves ϕsðωÞ and ϕþa ðωÞ, with the
formal independent of the oscillation amplitude A. As the
oscillation amplitude grows further, higher order harmonics
generated by the nonlinear term become more prominent. The
model system eventually exits from the limit cycle through an
infinite-period bifurcation and arrives at a new quiescent state.
The upper bifurcation point Nb is inversely proportional to the
adaptation error ϵ (see Supplementary Fig. 1).

The signal phase shift ϕsðωÞ is given by Eq. (6). When the
signal relaxation time τs is much shorter than the cell adaptation
time τ� � 2π=ω�, ϕsðωÞ stays close to zero so that the selected
period is essentially given by τ�. In this case, j~RaðωÞj is near its
peak and hence the cell density required by Eq. (5) is the lowest.
As signal clearance slows down, the crossing point shifts to lower
frequencies. Given a finite adaptation error ϵ > 0, there is a
generic maximum signal relaxation time τ�s � ϵ�1 beyond which
the phase matching cannot be achieved (see Supplementary
Note 3 and also Supplementary Fig. 3).

Excitable dynamics. DQS in Dictyostelium and other eukaryotic
cells takes the form of pulsed release of signalling molecules2,7,51.
The highly nonlinear two-component FitzHugh-Nagumo (FHN)
model is often employed for such excitable phenomena3,52,53.
Similar to the sensory adaptation model discussed above, each
FHN circuit has a memory node y that keeps its activity a low
(the resting state) under a slow-varying signal sðtÞ (Fig. 4a, see
also “Methods”). On the other hand, a sufficiently strong noise
fluctuation or a sudden shift of s sends the circuit through a large
excursion in phase space (known as a firing event) when y is slow
(i.e., τy � τa). Our numerical investigations show that the noise-
triggered firing does not disrupt the adaptive nature of the circuit
under the negative feedback from y. The noise-averaged response
of a single FHN circuit exhibits the same characteristics as the
sensory adaptation model, including adaptation to a stepwise
stimulus after a transient response (Fig. 4b, upper panel), as well
as the phase-leading behaviour and diminishing response
amplitude on the low frequency side (Fig. 4b, lower panel).

Fig. 4c shows time traces of individual cell activities (blue and
green curves) as well as that of the signal s (red curve) from
simulations of weakly coupled FHN circuits at three different
values of the coupling strength N (see Methods). At N ¼ 0:5, the
two selected cells fire asynchronously while s remains constant.
At N ¼ 0:9, collective behaviour as seen in the oscillation of s
starts to emerge, although individual circuits continue to fire
sporadically. Upon further increase of N , synchronised firing is

a b

Phase lead Phase lag
st

st

〈at〉

〈at〉

~ �

Fig. 2 Dynamical response of an intracellular adaptive variable a. a Response to a stepwise signal: after a transient response, a returns to its pre-stimulus
state (within a small error ϵ). In the simplest case, the transient response is controlled by the activity shift timescale τa and the circuit feedback timescale
τy . Solid and dashed lines correspond to over-damped (τa � τy) and under-damped (τa � τy) situations, respectively. b Response to a sinusoidal signal at
low (left) and high (right) frequencies. The phase shift ϕa switches sign.
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established. Despite the highly nonlinear nature of the FHN
model, both the onset coupling strength No and the frequency ωo
are well predicted by Eqs. (4)–(5) using the respective response
functions in the resting state (Fig. 4d).

Yeast glycolytic oscillations. We take the adapt-to-oscillate sce-
nario one step further to examine the dynamics of ATP auto-
catalysis in yeast. Concentration oscillations of NADH and
glycolytic intermediates have been observed in yeast cell extracts
as well as in starved yeast cell suspensions upon shutting down
the respiratory pathway (see ref. 22 for a review). The phospho-
fructokinase (PFK), an enzyme in the upper part of the glycolytic
pathway, is tightly regulated by ATP, a key product of glycolysis.
This robust negative feedback is commonly regarded as the driver
of glycolytic oscillations, with a typical period of 30–40 s in intact
cells but 2 min or longer in extracts. Cells at high density oscillate

synchronously due to redox signalling via the freely diffusing
molecule acetaldehyde (ACE)22,26. As the cell density decreases,
the synchronised behaviour breaks down. While many studies
found continued oscillation of individual cells at their own
frequencies25,54, simultaneous disappearance of individual and
collective oscillations as in other DQS systems has also been
reported23. We show below that both types of behaviour could be
accommodated in a model of glycolysis that couples intracellular
redox state to ATP autocatalysis.

We first investigate the dynamic properties of single-cell
glycolysis at fixed intracellular glucose and ACE concentrations.
Collective oscillations in yeast cell suspensions, which require
ACE transport across the cell membrane, will be discussed later.
Our starting point is the du Preez et al. model55 that includes
around 20 metabolic reactions (Fig. 5a). By monitoring the
temporal response of metabolites under perturbations of the
intracellular ACE concentration, we obtained a phase diagram
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Fig. 3 A weakly nonlinear model with adaptation. a–c Single-cell response. a A noisy two-component model with negative feedback. b Frequency-resolved
phase shift ϕa ¼ � argð~RaÞ. A sign change takes place at ω ¼ ω� ’ ðτaτyÞ�1=2, with a leading s on the low frequency side. c Real (~R0a) and imaginary (~R00a)
components of the response spectrum. ~R0a is of order ϵ in the zero frequency limit, while ~R00a changes sign at ω ¼ ω�. Also shown is the correlation spectrum
~CaðωÞ multiplied by ω=ð2TÞ, where T is the noise strength. The fluctuation-dissipation theorem ~R00a ¼ ω~CaðωÞ=ð2TÞ for thermal equilibrium systems is
satisfied on the high frequency side, but violated at low frequencies. d–f Simulations of coupled adaptive circuits. d Time traces of the signal (red) and of
the activity (blue) and memory (cyan) from one of the participating cells at various values of the coupling strength N ¼ α1α2N. e The oscillation amplitude
A (of activity a) and frequency ω against N. The amplitude A grows as ðN� NoÞ

1=2
here, a signature of Hopf bifurcation. f Determination of oscillation

frequency from the renormalised phase matching condition at finite oscillation amplitudes: ϕþa ðω;AÞ ¼ �ϕþs ðω;AÞ. The linear model for s yields
ϕþs ðω;AÞ ¼ �ϕsðωÞ. Parameters: τa ¼ τy ¼ γ ¼ K ¼ c3 ¼ 1, α1 ¼ α2 ¼ 0:5, and ϵ ¼ 0:1. The strength of noise terms is set at T ¼ 0:01.
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shown in Fig. 5b. The white region marks spontaneous
oscillations in an isolated cell56. The glucose concentration,
which controls glycolytic flux, needs to be sufficiently high for
oscillations to take place. ACE also has a role in the dynamics:
either very low or very high concentrations arrest the oscillations.

The non-oscillatory part of the phase diagram can be further
divided into three sub-regimes according to the adaptive proper-
ties of the metabolic network against an ACE signal (coloured
bands in Fig. 5b). Figure 5c gives, under one representative
condition in each band, the concentration variation of four
metabolites upon a sudden shift in the intracellular ACE
concentration ACEin. In all cases, the intracellular redox agent
NAD follows closely ACE concentration change and hence acts as
an instantaneous transducer of the signal. ATP adapts in both the
orange and blue band, while PYR, the substrate to produce ACE,
adapts only in the blue band. TRIO, the metabolite immediately
upstream of the reaction GAPDH that uses NAD as cofactor,
does not adapt. Overall, the adaptation error increases progres-
sively as one moves away from the oscillatory region. A sign
change in the response of ATP (and also of TRIO) takes place
across the dashed line at ACEin;0 ’ 0:2 mM.

Figure 5d shows phase shifts of ATP, NAD and five
other metabolites along the glycolytic pathway against a periodic
ACE signal at various frequencies. At the point marked by star in
the orange band, ATP, BPG and PEP are phase-leading (after a
ππ shift) below the frequency ω� ’ 20 min�1 (upper panel). The
list is expanded to all six metabolites (except NAD which is

synchronised with the signal) when the environment shifts to the
point marked by diamond in the blue band (lower panel). In
particular, PYR (blue line) have a large phase lead around ω�,
which matches its adaptive behaviour under Fig. 5c (Supplemen-
tary Note 4).

To further disentangle dynamical properties of the network, we
constructed a reduced model in Fig. 5e by taking into account
stoichiometry and known regulatory interactions along the
glycolytic pathway24, and by making use of the timescale separation
in the turnover of metabolites as suggested by their response
spectra (Fig. 5d and Supplementary Note 5). Since ATP and PYR
now appear as co-products of the condensed reaction PYK in the
reduced model, the latter can be viewed as a reporter of ATP
homeostasis implemented by the negative feedback loop (cyan line
in Fig. 5e). Figure 5f shows the phase diagram of the reduced model
against the intracellular ACEin;0. Similar to the full model at high
glucose concentrations, the circuit enters an oscillatory state at
intermediate values of ACEin;0, and shows adaptive response on the
two wings. The extended adaptive regime on the high ACEin;0 side
differs from the behaviour seen in Fig. 5b, but is reproduced by a
mutant of the full model where the glyoxylate shunt (GLYO) is
turned off (Supplementary Figs. 10–11).

We now examine a model of yeast cell suspensions where
individual cells metabolise according to the reduced model and
communicate their redox state through ACE (Supplementary
Note 6). ACE is synthesised internally and degraded at rates kin
and kex within and outside the cell, respectively. The rate of its
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cross-membrane transport is set by the membrane permeability
D. When D is large, the intracellular and extracellular ACE levels
are essentially the same (left panel, Fig. 5g). On the low density
side, the homogeneous cell population enters the oscillatory phase
through synchronisation of oscillatory cells. This behaviour
continues beyond the point ACEin ¼ 0:72 (arbitrary unit) when
an isolated cell switches from oscillation to adaptation (Fig. 5f). In
other words, the system crosses over smoothly from oscillator
synchronisation to adaptation-driven oscillations, or DQS. As D
decreases and becomes comparable to ACE degradation rates (set
at kin ¼ 0:5 and kex ¼ 0:3), the intracellular ACE concentration
grows and eventually exceeds the upper self-oscillatory threshold
ACEin ¼ 0:72 even at the low cell density limit. Our simulations
indicate that DQS persists at D ¼ 0:4 but disappears at D ¼ 0:1
(middle and right panels, Fig. 5g). Interestingly, DQS at D ¼ 0:4
disappears at an upper threshold density ρc2 ¼ 0:73. This inverse
DQS, i.e., oscillation quenching at high cell density, can be
quantitatively explained by Eqs. (4)–(5) using the numerically
determined response functions that depend on the cell density
(Supplementary Note 6 and Supplementary Fig. 15).

Discussion
In this work, we investigated a general scenario for emerging
oscillations in a group of cells that communicate via a shared signal.
It covers a broad class of pulsation behaviour in cell populations,
collectively known as DQS. Using the single-cell response to
external stimulation, we formulated a quantitative requirement for
the onset of collective oscillations that must be satisfied by active
cells as well as models of them. A proof is presented to link
this requirement to the adaptive release of signalling molecules
by individual cells. Our work thus consolidates observations made

in the literature and formalises adaptation as a unifying theme
behind DQS.

The above mathematical results connect well to the recent
surge of interest in active systems, where collective phenomena
emerge due to energy-driven processes on the microscopic
scale57,58. The study of such non-equilibrium processes opens a
new avenue to explore mechanisms of spontaneous motion on
large scales. We presented a general formula for the energy out-
flow of a living cell through a designated mechanical or chemical
channel under periodic stimulation. This energy flux is positive
over a range of frequencies when the cell responds to the stimulus
adaptively. Since adaptation is a measurable property of a cell, the
thermodynamic relation is applicable without making specific
assumptions about intracellular biochemical and regulatory pro-
cesses, while most models do. When cells are placed together in a
fixed volume, a quorum is required to activate the energy flow via
self and mutual stimulation.

We reported three case studies to illustrate how these general
yet quantitative relations could be applied to analyse the onset of
collective oscillations in specific cell populations. Our first
example is a coarse-grained model where signal reception and
release are integrated into the same activity node (e.g., a mem-
brane protein or a molecular motor). Due to the weak non-
linearity of the intracellular circuit, many analytical results were
obtained. The intracellular adaptive circuit has two timescales: the
activity relaxation time τa and the negative feedback time τy .
Their ratio Q2 ¼ τa=τy , similar to the quality factor in resonators,
determines the shape of the adaptive response (Fig. 2). At small
adaptation error ϵ � 1, the imaginary part of the response
function ~RaðωÞ changes sign at the characteristic frequency
ω� ’ ðτaτyÞ�1=2. This is also approximately the frequency where
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j~RaðωÞj reaches its maximum. When cells are coupled through
the signal with a relaxation time τs, the onset oscillation fre-
quency ωo increases with decreasing τs, reaching its maximal
value ω� when τs � 1=ω�.

Much of these results carry over to our second example, a
population of coupled excitable circuits described by the FHN
model. Despite its highly nonlinear nature, the FHN model in the
resting state shows adaptive response under weak stimulation.
Our numerical simulations of the coupled system at weak noise
confirm the onset oscillation frequency and the critical cell den-
sity predicted by Eqs. (4)–(5).

The above theoretical predictions compare favourably with
available experimental data. The first is mechanical stimulation of
hair cells carried out by Martin et al.19, where the cellular
response was extracted using a flexible glass fibre. Deformation of
the glass fibre, which is the signal here, has a relaxation timescale
(�0:5 ms) much shorter than the adaptation time of the hair
bundle (�0:1 s). Spontaneous oscillations of the combined sys-
tem were observed at 8 Hz, the predicted frequency where the
imaginary part of the hair bundle response function ~R00

aðωÞ
undergoes the expected sign change. The second is a recent
microfluidic single-cell measurement of Dictyostelium reported by
Sgro et al.3, where the change of cytosolic cAMP level (activity a)
in response to extracellular cAMP variation (signal s) was pre-
sented. From the measured response aðtÞ to a step increase of the
signal in their work (reproduced in Fig. 6a, upper panel), we
computationally deduced the response function RaðtÞ ¼ da=dt in
the time domain (Fig. 6a, lower panel) and then the response
spectrum ~Ra via Fourier transform. The resulting phase shift ϕa
changes sign around ω� ¼ 1 min�1 (Fig. 6b). According to our
theory, the onset oscillation period at high flow rate should be
around 6.28 min, which is indeed what was observed in experi-
ments2–4.

DQS in Dictyostelium is a time-dependent phenomenon cou-
pled to cell migration and development1,5. In the experiments
reported in refs. 2,3, synchronised firing of cells starts five hours
after nutrient deprivation. The period of firing shortens from
15–30 min at the onset to 8 min and thereafter 6 min as cells
begin to aggregate. Therefore the onset of collective oscillations
may not be triggered by a critical cell density as such but the cell
density does affect the period of oscillations. Previously, a prop-
erty known as fold-change detection (FCD) was invoked and
verified to explain cell-cell signalling even when cells are far
apart4. In FCD, the intracellular signal relay circuit is activated by
a relative change Δs=s of the signal s. Consequently, the detection

sensitivity of the activity response function α2 � 1=s. In a
population of communicating cells, the signal strength s is pro-
portional to the cell density N . Hence, FCD renders the signal
relay efficiency N independent of the cell density N . To explain
the accelerated pulsing at increasing cell densities, other aspects of
the system need to be considered, e.g., cAMP clearance by
phosphodiesterase secreted by cells61. Building these details into
the FHN model, Sgro et al.3 showed that the coupled equations
are able to qualitatively reproduce the observed behaviour.
The data analysis procedure illustrated by Fig. 6 offers a direct
way to link pulsation from 8min to about 6 min with a faster
signal clearance effected by a higher concentration of phospho-
diesterase in the surrounding medium. The long firing interval
at early stage of the development could be attributed to physio-
logical differences in the intracellular molecular network, e.g., a
much longer negative feedback time τy that awaits experimental
verification59,60. With this type of data, a similar procedure could
be applied to analyse the segmentation clock in the presomitic
mesoderm7.

Our third example, the glycolytic oscillation in yeast cell sus-
pensions, is also an open problem. Simulation studies of a
detailed model of yeast glycolysis55 yielded a relatively simple
phase diagram shown in Fig. 5b, with the intracellular glucose
and ACE concentrations as control parameters. As reported
previously55, cells in the white region oscillate spontaneously in a
constant environment, driven by an instability associated with the
negative feedback in ATP autocatalysis. In the neighbourhood of
this region, we found that the ATP concentration adapts to the
intracellular environment, in particular to a sudden shift in ACE
concentration that affects directly the intracellular NAD/NADH
ratio. The adaptation error increases as one moves away from the
oscillatory region. These dynamical features are captured by a
reduced model of ATP autocatalysis we proposed to approximate
the low-dimensional attractor of the full model at high glucose
concentrations. We then considered a homogeneous population
of cells that carry out fermentation according to the reduced
model, using membrane permeability D to tune intracellular ACE
concentration at a given cell density. When D is much greater
than the ACE turnover/degradation rates, the intracellular and
extracellular ACE levels are equilibrated. In such a situation,
collective oscillations on the low cell density side first emerge
through synchronisation of individual cells that enter the self-
oscillatory state. Further increase of the cell density elevates both
intracellular and extracellular ACE levels, eventually brings
individual cells out of the self-oscillatory state. However, the
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population continues to oscillate following the DQS scenario.
Slower cross-membrane diffusion drives up intracellular ACE
level and, at some point, eliminates self-oscillation. Nevertheless,
the population may still oscillate via DQS at an intermediate
range of cell densities. Beyond an upper critical cell density, the
diminishing adaptive response of glycolytic flux to the signal
eventually arrests collective oscillations. This new phenomenon,
which we name inverse DQS, is quantitatively predicted by our
theory. We note that the strong cell-to-cell variability observed in
single-cell experiments56 could significant alter the behaviour
shown in Fig. 5g on the low cell density side, an issue we leave to
future work.

These model studies helped to refine and resolve
various quantitative issues in the induction of collective
oscillations in well-studied systems, and at the same time
inspire novel applications built around adaptation-driven signal
relay. One promising direction to follow is the development of
artificial oscillatory systems with techniques from synthetic
biology62–65. In analogy with the hair cell/glass fibre setup,
one may think of tricking a quorum-sensing cell to oscillate
by confining it to a volume small enough to enable positive
signal relay.

In statistical physics, the response function formalism is widely
used to analyse system level response to environmental pertur-
bations, but its application to collective behaviour in biological
systems is still limited. Our examples show that cell models with
different levels of biological detail, out of either necessity or
convenience, could yield qualitatively or even quantitatively
similar response curves with respect to, say the production of a
particular chemical used in cell-to-cell communication, which is
reassuring. As these curves are increasingly accessible from
experiments, their direct use for analysis and hypothesis building
is highly desirable. With respect to the link between adaptation
and collective oscillations, our formulation unifies and generalises
previous studies in at least three specific settings. The first is an
abstract 3-variable model that connects fold-change detection of
individual cells to the robustness of collective oscillations over a
broad range of cell densities4. In the second case, adaptation was
proposed to play an important role in the collective oscillation of
neuronal networks49. Lastly, an Ising-type model of chemor-
eceptor arrays in E. coli50 predicts that increasing the coupling
strength between adaptive receptors drives the system to collec-
tive oscillations, although in reality the chemoreceptor array
manages to operate below the oscillatory regime. Despite the risk
of running into an oscillatory instability, the coupling enhances
sensitivity of the array to ligand binding. Along this sensitivity-
stability tradeoff, one may speculate that some of the reported
collective oscillations under laboratory conditions could actually
arise from over perfection of adaptive/homeostatic response in
the natural environment, a hypothesis that invites further
experimental testing.

Methods
An adaptive model with cubic nonlinearity. The data presented in Fig. 3 were
obtained from numerical integration of the coupled equations41,44: τa _a ¼ �a�
c3a

3 þ y þ α2sþ ηa; and τy _y ¼ �a� ϵy þ ηy : Here y is a memory node that
implements negative feedback control on a, ϵ sets the adaptation error, and τa and
τy are the intrinsic timescales for the dynamics of a and y, respectively. ηa and ηy
are gaussian white noise with zero mean and correlations: hηaðtÞηaðτÞi ¼
2Tτaδðt � τÞ and hηyðtÞηyðτÞi ¼ 2Tτyδðt � τÞ, where δðtÞ is the Dirac delta

function. The cubic nonlinearity (c3a
3) is needed to limit cellular activity to a finite

strength. For simplicity, we choose α2 ¼ 1 so that the response function defined by
~RaðωÞ ¼ h~aðωÞi=~sðωÞ can be compared with its equilibrium counterpart that
satisfies the FDT ~R00

a ¼ ω~CaðωÞ=ð2TÞ, with ~R00
a denoting the imaginary component

of ~Ra . Data in Fig. 3 were obtained by coupling cells via Eq. (1) with FðsÞ ¼ �Ks
and ξ ¼ 0.

Existence of oscillatory state under an adaptive response. We have shown in
the Main Text that adaptive intracellular observables exhibit a phase-leading
response in a certain frequency interval. For a given adaptive observable a, the
phase lead ϕaðωÞ spans a continuous range from 0 to a maximum value ϕmax

a (< π).
Meanwhile, the phase delay ϕs ¼ �tan�1ðωτsÞ varies continuously from 0 to �π=2
(Eq. (6)). Since τs controls how fast ϕsðωÞ decreases from 0 to �π=2 as ω increases,
intersection of �ϕsðωÞ with ϕaðωÞ can always be found by tuning τs. In particular,
when τs ! 0, a solution is found at the high frequency end of the active frequency
interval where ϕaðωÞ ¼ 0. From this discussion, we see that the onset frequency ωo
of oscillations is mostly determined by the intracellular dynamics, i.e., ϕaðωÞ, but
the medium can have a weak effect on ωo when its relaxation time is comparable to
that of the intracellular dynamics.

Coupled FHN model. A single FHN circuit takes the form,
τa _aj ¼ aj � a3j =3� yj þ α2sþ ηaj , τy _yj ¼ aj � ϵyj þ a0 þ ηyj : The positive sign of

the first term in the equation for aj gives rise to excitability. In the absence of the
stimulus s, each cell assumes the resting state with a mean activity ars � hajðtÞi.
For small values of ϵ, the resting state activity ars ’ �a0 is nearly constant under a
slow-varying sðtÞ. FHN circuits are coupled together through a signal field whose
dynamics is described by, τs _s ¼ �sþ α1

PN
j ðaj � arsÞ. The parameters used in

generating Fig. 4 are: α2 ¼ 1, N ¼ 1000, ϵ ¼ 0:1, T ¼ 0:1, τa ¼ 1, τy ¼ 5,

a0 ¼ 1:5, and τs ¼ 1. α1 ¼ N=ðNα2Þ is determined by the control parameter N .

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from S.-W. Wang on
request. They can also be generated from the provided code.

Code availability
The code that support the findings of this study are available at https://github.com/
ascendancy09/Collective-oscillations.
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