
1

Supplementary Information for

Emergence of collective oscillations in adaptive cells

Wang et al.



2

Supplementary Figures

Supplementary Figure 1. Collective oscillations in the model Equation (13) with nonlinear adaptation (c3 = 1)
and linear signal relaxation (d3 = 0). (A) Oscillation frequency against the effective cell density N̄ = α2α1N . (B) The
phase diagram in the plane spanned by N̄ and the adaptation error ε. Other parameters are the same as in Fig. 3 of the Main
Text.

Supplementary Figure 2. Collective oscillations in the model Equation (13) with linear adaptation (c3 = 0) and
nonlinear signal relaxation (d3 = 1). (A) Temporal trajectories at various values of N̄ . (B) The phase lead φa and lag −φ+

s

against ω at selected oscillation amplitudes. (C) The predicted oscillation frequency and amplitude as compared with those
obtained from numerical simulations. Other parameters are the same as in Fig. 3 of the Main Text.
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Supplementary Figure 3. Phase-matching at the onset of oscillations for different values of signal timescale τs and adaptation
error ε. (A) Phase shift of the cell activity (φa) and signal response (|φs|) at selected values of τs (upper panel) and adaptation
error ε’s (lower panel). The onset frequency is given by the intersection of the two curves [Equation (12a)]. (B) Predicted
onset frequency ωo and onset coupling strength N̄o for different values of τs. Oscillations will not be found when the signal
relaxation time τs > τ∗s (ε). (C) Numerical results supporting linear scaling between τ∗s (ε) and 1/ε. The data are obtained from
the coupled adaptive circuits under the same parameters (except ε and τs) as in Fig. 3 in the Main Text.
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Supplementary Figure 4. The network of reactions in a detailed model of glycolysis15. Letters in blue de-
note metabolites, while those in red are the reactions. Directional (bidirectional) arrows indicate irreversible (reversible)
reactions. Abbreviations: Glco, glucose; ACE, acetaldehyde, ADH, alcohol dehydrogenase; AK, adenylate kinase; ALD,
fructose-1,6-bisphosphate aldolase; BPG, 1,3-bis-phosphoglycerate; ENO, phosphopyruvate hydratase; F16P, fructose-1,6-
bisphosphate; F6P, fructose 6-phosphate; GAPDH, D-glyceraldehyde-3-phosphate dehydrogenase (phosphorylating); G3P,
glycerol 3-phosphate; G3PDH, glycerol 3-phos- phate dehydrogenase; G6P, glucose 6-phosphate; GLYCO, glycogen branch;
GLK, glucokinase (a hexokinase); P2G, 2-phosphoglycerate; P3G, 3-phosphoglycerate; PEP, phosphoenolpyruvate; PDC, pyru-
vate decarboxylase; PGI, glucose-6-phosphate isomerase; PFK, 6-phosphofructokinase; PGK, phosphoglycerate kinase; PGM,
phosphoglycerate mutase; PYK, pyruvate kinase; PYR, pyruvate; Treha, trehalose branch; SUC, succinate branch; GLYO,
glyoxylate shunt.

Supplementary Figure 5. Spontaneous oscillations in the full model. (A) Trajectories of all metabolites at glucose
concentration Glco=10. (B) and (C) Time-averaged metabolite concentrations and reaction fluxes in descending order.
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Supplementary Figure 6. Response of metabolites to a redox signal at low ACE concentrations. Here, ACE(t) =
ACE0[1 + 0.02H(t)], with H(t) being a Hill function with a large Hill coefficient. The notation δx of a variable x represents
its relative change from a pre-stimulus level x̄, i.e., δx ≡ [x(t)− x̄]/x̄. Quantities such as PYR and NAD which have too small
values are amplified to make them visible on the plot. (A) The response of metabolites around G6P in the upper section of
the glycolytic pathway; (B) The response of metabolites around BPG in the middle section of the glycolytic pathway; (C) The
response of metabolites from BPG to PYR in the lower section of the glycolytic pathway; and (D) The response of metabolites
in the downstream fermentation pathway. Parameters: ACE0 = 0.05 and Glco = 10.

Supplementary Figure 7. Concentration variations along the glycolytic pathway stimulated by a periodic redox
signal. Here, ACE(t) = ACE0[1+0.02 sin(ωt)]. Organization of metabolites in panels (A)-(D) is the same as in Supplementary
Figure 6. Parameters: ACE0 = 0.05, Glco = 10, and ω = 21.
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Supplementary Figure 8. Phase shifts of metabolites against the frequency of a sinusoidal ACE signal. (A)
Metabolites in the “preparatory phase” of the glycolytic pathway, where ATP is consumed to activate the 6-carbon ring
molecule. (B) Substrate, product and cofactors of the reaction GAPDH that act as the receptor of the redox signal, together
with ATP. (C) Metabolites in the “payoff phase” of the glycolytic pathway, where ATP is harvested. For the particular values
of the extracellular glucose and acetaldehyde chosen, phase lead of PYR over ACE occurs in the range of frequencies delimited
by black arrows. The blue arrow indicates the intrinsic frequency studied in Supplementary Figure 7. (D) Metabolites that
appear in Equation (25). The phase shift of a number of metabolites shows a dip at the low frequency end, indicating a small
but finite adaptation error. Parameters: ACE0 = 0.05, Glco = 10.
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Supplementary Figure 9. A minimal model of glycolysis with redox control. (A) The network of metabolites
(symbols) and reactions (boxes). (B) Response of metabolites upon a stepwise perturbation s(t) = 0.04(1 + 0.01H(t)). (C)
Response of corresponding metabolites in the full model computed using parameter values given in Supplementary Figure 6.
(D) Response properties of the minimal model as the intracellular redox state changes from reductive to oxidative (left to right).
Parameters: h = 3, α2 = α1 = 1, τ = 0.01, c0 = 0.02, and ε = 0.01.

Supplementary Figure 10. A mutant glycolysis model with the GLYO reaction switched off. (A) Phase diagram
of this model at an environment set by the glucose and ACE concentration. The white regime is the self-oscillatory regime,
while the blue one is the adaptive regime for both ATP and PYR. The adaptive regime of PYR and ATP overlaps now, in
agreement with the minimal model. (B) The temporal dynamics of selected metabolites under a shift of the signal ACE at the
two indicated conditions (star and diamond in A). (C) The phase shift of various metabolites under a periodic perturbation of
the signal ACE at the selected conditions.
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Supplementary Figure 11. The response of PYK flux to a step perturbation of ACE at t = 10. (A) The response
of the original full model at ACE=0.05 and 0.77, respectively. (B) The response of the modified full model with blocked GLYO
reaction at ACE=0.05 and 0.77, respectively. (C) The response of the minimal model. Parameters: Glco=10 for (A) and (B);
the parameters for the minimal model are the same as in Supplementary Figure 9.

Supplementary Figure 12. Collective dynamics of the minimal model coupled via Equation (28). (A)-(D)
Temporal trajectories at selected values of the cell density ρ. The same color scheme of variables is used. Inset in B shows the
signal trajectory on an enlarged scale. Parameters: h = 3, α2 = α1 = 1, ε = 0.01, kin = 0.5, kex = 0.3, τ = 0.01, c0 = 0.02, and
τs = 0.001.
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Supplementary Figure 13. Collective oscillations against the yeast cell density. (A) Upper panel: oscillation
amplitude of the signal s as a function of the cell density ρ. Lower panel: time-averaged signal concentration against ρ. At
ρc = 0.34, the signal strength reaches the upper threshold sc = 0.72 for the oscillating state of individual cells (Supplementary
Figure 9E). The oscillating state at ρ > ρc can be considered as DQS driven by adaptation. (B) Upper panel: oscillation
amplitude of the sender node a against ρ. Lower panel: time-averaged value of a against ρ. Parameters are the same as in
Supplementary Figure 12.

Supplementary Figure 14. Effect of delay in cross-membrane transport of the signalling molecule on collective
dynamics. Results of numerical integration of Eqs. (26)] coupled to the two-component signal dynamics Equation (27)] at
selected values of D = 100, 1, 0.4, 0.1. In the lower panels, the blue and orange dots correspond to the average of sin and sex,
respectively. Other parameters are the same as in Supplementary Figure 12.
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Supplementary Figure 15. Predicting the death of collective oscillations at large cell densities. (A) Predicting
the critical frequency using self-consistency check. Upper panel: the spectrum of the numerically computed phase shift of
the intracellular signal sin and the extracellular signal sex, respectively. Lower panel: the spectrum of the compound gain
|R̃sinR̃sex |. Both of the spectra are computed at the upper critical cell density ρc = 0.73 and D = 0.4. (B) Comparing the
prediction with results from direct numerical simulation of population dynamics [Eqs. (26) and Equation (27)] at D = 0.4.
Other parameters are the same as in Supplementary Figure 12.
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Supplementary Note 1. Nonequilibrium thermodynamics of adaptive response

Phase-leading response of an adaptive variable

Consider the temporal variation at of an intracellular observable a induced by a sinusoidal signal st from the
environment at frequency ω. The amplitude of st is assumed to be small, so that it can be treated as a perturbation.
The observable a is either directly or indirectly coupled to the signal s. On the scale of a single cell, both at and
st may contain stochastic components. In the following, we shall examine the noise averaged response of a to the
deterministic part of s, i.e., the signal. As usual, we use 〈·〉 to denote the noise average. The following convention on
forward and inverse Fourier transforms is adopted,

f̃(ω) =

∫ ∞
−∞

f(t) exp(iωt)dt, f(t) =

∫ ∞
−∞

f̃(ω) exp(−iωt)dω
2π
. (1)

In a steady-state, the ratio of the Fourier amplitudes 〈ã(ω)〉 and 〈s̃(ω)〉 defines the response function R̃a(ω) ≡
〈ã(ω)〉/〈s̃(ω)〉, which can be separated into its real R̃′a and imaginary R̃′′a parts. (For a cellular variable a that follows
stochastic dynamics, the ensemble averaged response is considered.) The well-known Kramers-Krönig relation from
causality requirement on the response function states2:

R̃′a(ω) =
2

π

∫ ∞
0

R̃′′a(ω1)
ω1

ω2
1 − ω2

dω1. (2)

In the case of a perfectly adapting a, the response vanishes under a sufficiently slow stimulus, i.e., limω→0 R̃a(ω) = 0.
Equation (2) then requires, ∫ ∞

0

R̃′′a(ω1)ω−1
1 dω1 = 0. (3)

Consequently, R̃′′a(ω) must change sign at least once along the frequency axis. Let φa = − arg(R̃a) be the phase of

−R̃a(ω), with the minus sign introduced by convention. Positive and negative values of R̃′′a thus translate to phase-lag
(−π < φa < 0) and phase-lead (0 < φa < π) of at over st, respectively. By virtue of continuity, the sign change of

R̃′′a(ω) is also expected in the partially adaptive case, provided the adaptation error ε ' R̃′a(0) is sufficiently small.

Energy outflow from an adaptive channel

Auto-induced collective oscillations in a dissipative medium require an energy source. Below, we show that an
active cell is able to output energy to a fluctuating s in the presence of an adaptive channel. The power of the output
depends on the strength of the coupling as well as the amplitude and frequency of the fluctuating signal.

Consider a slightly more general form of Equation (1) in the Main Text where the contribution from cell j to the
total thermodynamic force on s is given by O(aj), which in general is nonlinear in aj . The work done on s by the cell
in a time interval (0, L) can then be written as

Wj =

∫ L

0

Otṡtdt, (4)

where Ot ≡ O(aj(t)) and st are both fluctuating quantities in general. We now consider a sinusoidal signal st =
s0 + ∆s cos(ωt) with a small amplitude ∆s. To the first order in ∆s, we have

Ot ' O(0)
t + ∆s|R̃O(ω)| cos

(
ωt+ φO(ω)

)
. (5)

Here O
(0)
t denotes the stochastic trajectory of O in the absence of the sinusoidal signal. As usual, the linear response

function RO in the steady-state (ss) to a weak time-varying signal st is introduced through

〈Ot〉 ' 〈O〉ss +

∫ t

−∞
RO(t− τ)sτdτ, (6)
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where 〈·〉 denotes average over noise. The phase angle φO(ω) ≡ − arg R̃O(ω). Substituting expression (5) into Eq. (4)
and taking the limit L→∞, we obtain the time-averaged output power from the cell through this channel (omitting
the subscript j),

Ẇ = Otṡt + o
(
(∆s)2

)
=

1

2
ω|R̃O(ω)| sinφO(ω)(∆s)2 + o

(
(∆s)2

)
. (7)

Here the overline bar indicates averaging over time, and o
(
(∆s)2

)
denotes terms higher than second order in ∆s.

Given the relation Ot = O(at), adaptation of the cellular variable a to a slow-varying s also implies the adaption

of O to the signal. The causality condition (2) applied to Ot then requires R̃′′O(ω) ≡ −|R̃O(ω)| sinφO(ω) < 0 in a
certain frequency range. Consequently, Eq. (7) predicts energy outflow from the channel under a periodic stimulation
at these frequencies.

The discussion leading to Eq. (7) in the previous section can be easily extended to the energy outflow under an

arbitrary signal variation st with a power spectrum C̃s(ω),

Ẇ = −
∫
dωωR̃′′O(ω)C̃s(ω) + o(∆s2), (8)

where ∆s sets the overall amplitude of signal variation. If the cell were in thermal equilibrium, a would respond
passively to a time-varying signal with a phase-lag and dissipate the energy inflow generated by the stimulation. An
adaptive cell, on the other hand, is able to output energy in the form of work when stimulated in the right frequency
range. This form of energy outflow is different from the heat dissipation arising from keeping the system out of
equilibrium as studied in Refs.3–5.

The Fluctuation-Dissipation Theorem

The fluctuation-dissipation theorem (FDT) is generally presented as an identity between the response function of a
chosen variable to an external perturbation and the correlation function of the variable in question with the one that is
conjugate to the perturbation6. For Markov systems which are of interest here, FDT holds when the detailed balance
condition on the state-space transition rates is fulfilled. We refer the reader to Refs.7,8 for a detailed discussion,
including more rigorous definitions of various quantities of interest.

Assuming that the signal s affects the cell through coupling to a conjugate variable O which is proportional to the
variable a of interest, i.e., O = c0a with c0 a proportionality constant. In this case, FDT states that

R̃′′O(ω) =
ωC̃O(ω)

2T
> 0. (9)

Here, C̃O(ω) = c20〈|ã(ω)|2〉 is the power spectrum of Ot which is always positive. Equation (9) contradicts (3),
re-affirming that receptor adaptation cannot be realised without the presence of active processes inside the cell.

In Ref.9, adaptation through a 3-node incoherent feed-forward motif was considered. It was later shown that the
topology even supports adaptation in an equilibrium setting10. The main difference between these models and the
adaptive receptor model in the Main Text (Fig. 3 and Methods) is that, in the former, s not only couples to a directly,
but also to other intracellular variables. The conjugate variable O is then a combination of a and other intracellular
variables. We leave a detailed investigation of this issue to future work.

Supplementary Note 2. A self-consistent scheme for frequency selection and oscillation amplitude
determination

The thermodynamic analysis in the preceding section suggests the possibility of a positive feedback loop formed by
a periodic signal and adaptive cells under generic conditions. Collective oscillations emerge when signal amplification
by active cells overtakes signal dissipation in the passive medium. In this section, we examine this process in further
detail and derive equations that can be used to determine the frequency and amplitude of auto-induced oscillations
when the instability takes place. For simplicity, we shall consider a situation where diffusion of the signalling molecules
in the medium is very fast so that spatial variations of s is suppressed. Consequently, the notion of a well-defined
transition to the oscillating state can be introduced.
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The phase matching condition and threshold cell density

Given that individual cells couple to each other only through the signal field s, a self-consistency procedure similar
to the solution of mean-field models in statistical physics can be employed. In this case, the linear equations governing
an eigenmode with eigenvalue λ can be divided into subgroups associated with individual cells. The internal variables
of a given cell appear in one and only one of the subgroups. Solution of the subset of equations for cell j yields the cell
activity 〈ãj〉 = R̃a,j(iλ)〈s̃〉. The function R̃a,j(iλ) is the same function introduced in the preceding section to describe

the linear response of aj to a sinusoidal perturbation at frequency ω = iλ. Likewise, a response function R̃s(ω) from
the linearised relaxational dynamics of s can be obtained, treating contributions from cells as source terms, as in Eq.
(1) of the Main Text. Combining the two steps, we arrive at the following eigenvalue equation for λ,

R̃s(iλ)

N∑
j=1

α1R̃a,j(iλ) = 1. (10)

When a particular eigenvalue crosses the imaginary axis, its real part vanishes, while its imaginary part ωo (the onset
frequency) satisfies,

α1NoR̃s(ωo)R̃ā(ωo) = 1. (11)

Here R̃ā(ω) ≡ N−1
∑N
j=1 R̃a,j(ω) is the averaged single-cell response function.

Equation (11) can be written separately for the phase shift φ = − arg R̃ and amplitude |R̃| of the response functions.
For α1 > 0, we have,

φā(ωo) = −φs(ωo), (12a)

No =
1

|α1R̃s(ωo)||R̃ā(ωo)|
. (12b)

Eq. (12a) determines the frequency ωo at the onset of collective oscillations, while Eq. (12b) gives the threshold cell
density No. As we mentioned in the Main Text, when the signal is passive, phase lead by the cell is required for Eq.
(12a) to be fulfilled. The explicit relation presented here complements the energy argument based on Eq. (7), with
the activity-generated thermodynamic force Ot being proportional to α1aj .

As it stands, the cell density N does not appear explicitly in the phase-matching condition (12a). Therefore the
frequency of collective oscillations can be estimated from separate measurements of the single-cell response and the
medium response. In reality, it is conceivable that properties of the medium are affected by the presence of cells, e.g.,
the concentration of the signalling molecules secreted. Consequently, both R̃s(ω) and R̃ā(ω) may have certain weak
dependence on N .

The amplitude equations and frequency shift

Beyond the initial instability, nonlinear effects need to be treated explicitly to determine the amplitude and frequency
of oscillations. Assuming a periodic state, the signal strength s(t) can be expressed as a Fourier series that includes
the first harmonic as well as higher order harmonics produced by nonlinearities in the system dynamics. Likewise, the
noise-averaged cellular activity 〈aj(t)〉 can also be expressed as a Fourier series in t with the same basic frequency.
For weak noise, the trajectory of the system falls on a well-defined limit cycle whose mean radius r sets the overall
amplitude of oscillations, while the amplitude of the nth order harmonic scales as rn. This structure allows for a
systematic determination of the amplitudes using perturbation theory. Below, we illustrate the procedure in the case
of cubic nonlinearities in both the dynamics for s and the dynamics for a, and comment on similarities and differences
in more general situations. When the cell’s activity is noisy, more sophisticated schemes based on the probability
distribution function of the cellular state need to be introduced (see, e.g. Ref.11).

Let us consider a noiseless version of the adaptive dynamics defined in the Main Text (Fig. 3 and Methods), together
with a modified version of Eq. (1) that includes a cubic nonlinearity,

τaȧj = −(aj − yj)− c3a3
j + α2s (13a)

τy ẏj = −(aj + εyj) (13b)

τsṡ = −s− d3s
3 + α1

N∑
j=1

aj . (13c)
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Here τs = γs/Ks gives the relaxation timescale for the signal. We also set α1 → Ksα1 for notational simplicity. The
two coefficients c3 and d3 set the strengths of nonlinearities in the cellular and signal dynamics, respectively. The
model has the inversion symmetry s→ −s and (aj , yj)→ (−aj ,−yj), all j. Furthermore, if we redefine the sign of s
and at the same time change the sign of α2 and α1, the equations remain the same.

We now seek a periodic solution to Eqs. (13) in Fourier form,

s(t) = B cos(ωt) +

∞∑
n=2

B(n) cos(nωt+ φ(n)
s ), (14a)

aj(t) = Aj cos(ωt+ φa,j) +

∞∑
n=2

A
(n)
j cos(nωt+ φ

(n)
a,j ), j = 1, . . . , N, (14b)

yj(t) = Cj cos(ωt+ φy,j) +

∞∑
n=2

C
(n)
j cos(nωt+ φ

(n)
y,j ), j = 1, . . . , N. (14c)

The amplitudes and phase shifts, all assumed to be real, satisfy a set of equations which can be derived by substituting
Eqs. (14) into Eqs. (13), and grouping terms according to the order of the harmonic.

Starting from the first harmonic in the expressions (14), the cubic terms in Eqs. (13a) and (13c) generate the first
and third order harmonics according to the identity (cosφ)3 = (3 cosφ+ cos 3φ)/4. Hence terms such as A3

j and B3

are present in the equations for the first harmonic. On the other hand, the cubic nonlinearities do not generate even
order harmonics if they are not included in the series initially. Hence, up to the third order in the amplitudes, the
equations for the coefficients of the first harmonic take the form,

−iωτaãj ' −(1 +
3

4
c3|ãj |2)ãj + ỹj + α2s̃, (15a)

−iωτy ỹj = −ãj − εỹj , (15b)

−iωτss̃ ' −(1 +
3

4
d3|s̃|2)s̃+ α1

∑
j

ãj . (15c)

Here we have introduced the short-hand notations s̃ = B, ãj = Aj exp(−iφa,j), and ỹj = Cj exp(−iφy,j).
To gain an intuitive understanding of the oscillatory solution as the cell density increases beyond the threshold No,

we first eliminate the intracellular variable ỹj in Eqs. (15a) and (15b) to obtain,

ãj = R̃+
a,j(ω)s̃, (16)

where

R̃+
a,j(ω) ≡ ãj(ω)

s̃(ω)
' α2

1 + 3c3|ãj |2/4− iωτa − 1/(iωτy − ε)
(17)

is a “nonlinear response function” which expresses the ratio of the complex amplitudes of the first harmonic on the
limit cycle. Similarly, Eq. (15c) can be rewritten as

s̃ = R̃+
s (ω)

N∑
j=1

α1ãj , (18)

where

R̃+
s (ω) ' 1

1 + 3d3|s̃|2/4− iωτs
(19)

is a “nonlinear response function” of s on the limit cycle. It is easy to see that R̃+
a (ω) and R̃+

s (ω) reduce to their

respective linear counterparts R̃a,j(ω) and R̃s(ω) when the oscillation amplitudes vanish.
We now combine Eqs. (16) and (18) to obtain the self-consistency condition,

α1NR̃
+
s (ω)R̃+

ā (ω) = 1, (20)

which is reminiscent of Eq. (11). Here R̃+
ā (ω) ≡ N−1

∑N
j=1 R̃

+
a,j(ω) is the averaged single-cell nonlinear response

function. When all cells are identical, R̃+
ā (ω) = R̃+

a (ω). As before, Equation (20) can be rewritten in terms of the
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phase and amplitude of the nonlinear response functions,

φ+
ā (ω) = −φ+

s (ω), (21a)

α1N =
1

|R̃+
s (ω)||R̃+

ā (ω)|
. (21b)

Formally, Eq. (21a) can be used to determine the frequency shift at a finite amplitude of oscillation, while Eq. (21b)
relates the oscillation amplitude to the cell density N . Since the amplitudes enter quadratically into the nonlinear
response functions, they are expected to increase as (N − No)1/2 just above the threshold cell density No, e.g., the
transition is of the Hopf bifurcation type.

In the Main Text, we have considered the case c3 = 1 and d3 = 0. Numerically, the oscillation frequency is found
to decrease as the coupling strength N̄ ≡ α2α1N increases (see also Supplementary Figure 1A). This is consistent
with Equation (21a) whose solution at selected oscillation amplitudes is shown in Fig. 3F in the Main Text. As the
amplitude of the oscillations increase, φ+

a (ω) decreases on the low frequency side. Consequently, the intersection point
with φ+

s (ω) = φs(ω) shifts to lower frequencies.
Interestingly, the limit cycle associated with the oscillating state in this model shrinks to a fixed point when N̄

exceeds an upper threshold value N̄b. The dependence of N̄b on the adaptation error ε, which is assumed to be small,
can be estimated as follows. At a fixed point of Eqs. (13) at d3 = 0, we have s ' α1Na (from ṡ = 0), y ' α2s (from
ȧ = 0), and a ' εy (from ẏ = 0). Consequently, the upper threshold for oscillations has the scaling

N̄b ∼
1

ε
. (22)

Figure 1B shows the numerical values for N̄o and N̄b against the adaptation error ε obtained in our simulations,
which confirms (22). The oscillating state expands over a larger range of cell densities when individual cells are more
adaptive.

Next, consider the case of nonlinear signal relaxation (d3 = 1) and linear adaptation (c3 = 0). The onset of collective
oscillations is similar to the previous case (Supplementary Figure 2A), except that oscillations speed up as the cell
density increases further. From Equation (19), we obtain

φ+
s (ω) = − arg R̃+

s (ω) = − arctan
[ ω

ωs(1 + 3d3|s̃|2/4)

]
, (23)

which decreases as the oscillation amplitude increases. As shown in Supplementary Figure 2C, the intersection point
shifts to the right. The predicted signal oscillation amplitude B = |s̃| and frequency shift agree quantitatively with
our numerical results (Supplementary Figure 2C).

In the more general case when both c3 and d3 are nonzero, we need to first express s̃ and ãj in terms of a common
variable that specifies oscillation amplitude before applying the phase-matching condition Equation (21a). As we see
from the discussions above, depending on which of the two cubic nonlinearities is stronger, the oscillation frequency
may shift either to lower or higher values. In general, nonlinearities may also be present in the dynamics of other
intracellular variables which need to be dealt with case by case.

When quadratic nonlinearities are present in the system dynamics, the second harmonic is generated and need to be
considered in the perturbative analysis. Consider for example the equation for aj with an extra term c2a

2
j . Following

the same procedure that led to Eqs. (15), we find an additional term c2ã
∗
j ã

(2)
j on the right-hand side of Equation (15a),

where ã
(2)
j is the amplitude of the second harmonic in aj(t) (including phase). The amplitude equation for the second

harmonic relates ã
(2)
j to c2ã

2
j and α2s̃

(2). Together with the equation for s̃(2), amplitudes of the second harmonic can

be expressed as a linear combination of terms c2ã
2
j from different cells. The upshot of this exercise is that coefficient

of the cubic term |ãj |2ãj in Equation (15a) should contain additional contributions proportional to c22. The nonlinear
response functions (17) and (19) on the limit cycle can still be defined in the same way, and Equation (20) still

holds formally. Through s̃(2), terms |ãk|2 from other cells enter the expression for R̃+
a,j(ω). Two conclusions can be

drawn from this fact: i) as in the case of cubic nonlinearities, the transition is still of the Hopf bifurcation type; ii)

R̃+
a,j(ω) can no longer be determined by simply measuring the response of a given cell to a sinusoidal stimulus at finite

strength, as it is affected by the oscillation pattern of other cells in the system due to the quadratic nonlinearity.

Supplementary Note 3. Minimal rate of signal decay/clearance at the onset of collective oscillations

Experiments have indicated that sufficiently fast breakdown of the signalling molecule is needed for DQS in dicty12

and for sustained oscillations in yeast cell suspensions13. Below we derive an upper limit for the signal relaxation time
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τs to satisfy the phase matching condition Equation (4) in the Main Text. The result is inversely proportional to the
adaptation error ε of the intracellular circuit.

Taking Equation (6) for the signal phase shift, φs = − tan−1(ωτs), we see that a longer τs yields a larger signal
delay |φs| at a given frequency. This is illustrated by Supplementary Figure 3A, upper panel, where the horizontal
frequency axis is shown on logarithmic scale. For a given ε, the intersection of the two phase-shift curves moves to
the left, yielding a lower onset oscillation frequency ωo and a larger coupling strength N̄ (Supplementary Figure 3B).
When τs reaches beyond an upper limit τ∗s (ε), the solution disappears (Supplementary Figure 3B). Interestingly, a
reduction of ε in Equation (10) increases φa(ω) on the low frequency side, and rescues the solution (Supplementary
Figure 3A, lower panel).

The observed inverse dependence of τ∗s on ε in Supplementary Figure 3C can be justified from the behaviour of the

two phase-shift functions at low frequencies. Close to ω = 0, Equation (9) in the Main Text yields R̃′a(ω) ∝ ε while

R̃′′a(ω) ∝ ω, as R̃′′a must be an odd function of ω. This is confirmed by expanding Equation (10) in the Main Text at

ω = 0. Consequently, φa(ω) ' −R̃′′a/R̃′a ∝ ω/ε. On the other hand, φs(ω) ≈ −ωτs in this regime. The two curves has
an intersection at low frequencies provided

τs < τ∗s ∝ 1/ε. (24)

Using the explicit expressions Eqs. (3) and (10) in the Main Text, we obtain τ∗s ' τy/ε for small ε. The critical
cell density and onset oscillation frequency at this maximal τs are given approximately by No ' K(α1α2ε)

−1 and
ωo ' ετ−1

y , respectively. This is compared to No ' K(α1α2)−1 and ωo ' (τaτy)−1/2 at τs < (τaτy)1/2, which are
insensitive to ε as long as it is sufficiently small.

Supplementary Note 4. Yeast glycolysis: single-cell perturbation study in the full model

The full intracellular reaction network of the kinetic model by du Preez et al.15 is shown in Supplementary Figure 4.
It contains around 20 reactions and 15 metabolite concentrations as dynamical variables. The reaction fluxes are
highly nonlinear functions of these variables. Predictions of the model were shown to agree semi-quantitatively with
experimental data on yeast glycolytic oscillations16. Below we use the same parameter values as adopted in the
original model termed dupree2 in15, unless otherwise stated.

Supplementary Figure 5 shows an oscillatory solution of the model at the glucose concentration Glco =10 mM.
The oscillation frequency is ω0 ≈ 21 min−1, corresponding to a period of τ0 ' 0.3 min. The mean concentration
of ACE is 0.17 mM (Supplementary Figure 5B). Reaction fluxes are concentrated along the linear pathway from
Glco to ETOH, while the side reactions carry much smaller flux (Supplementary Figure 5C, blue box). Below, we
present response properties of the model using ACE concentration as the second control variable, in addition to the
extracellular glucose concentration. Time is measured in minutes and concentrations in mM.

To move out of the oscillatory regime, we lower the mean acetaldehyde concentration to ACE0 = 0.05. Experi-
mentally, this can be achieved by adding cyanide (KCN) which reacts with ACE in the solution17. Supplementary
Figure 6 shows the time course of metabolites under a step-wise increase in the ACE concentration. The four panels
are organised following the order of metabolites along the glycolytic pathway, with the addition of ATP, ADP and
NAD. Most metabolites adapt at least partially, except F16P and TRIO upstream of the reaction GAPDH that uses
NAD and NADH as cofactors. The redox pair NAD and NADH, being tightly connected to ACE, do not adapt either.

We now consider oscillations of the same set of metabolites stimulated by a periodic redox signal at the frequency
ω0 of spontaneous oscillations mentioned above. In Supplementary Figure 7A, ATP, G6P and F6P are approximately
in phase with each other, but they are out of phase with Glci at the entry point of the pathway. The non-adaptive
F16P has a behaviour of its own. The phase relations for these metabolites have been measured experimentally, and
the results agree well with our numerics18. In Figs. 7B-C, metabolites from BPG down to PEP share nearly the
same phase with each other and with ATP. The non-adaptive TRIO lags slightly behind F16P. In Supplementary
Figure 7D, PYR at the end of the glycolytic pathway has an approximately 90◦ phase lead over ATP, and furthermore
a smaller phase lead over ACE and NAD.

Supplementary Figure 8 shows the phase shifts of metabolites against a sinusoidal signal ACE obtained from our
numerical simulations over a broad frequency range. Apart from PYR, the phase relationships among metabolites at
ω0 hold also at lower frequencies. In Supplementary Figure 8B, it is seen that NAD has essentially the same phase
as ACE in the frequency interval, while NADH is completely out of phase. Therefore, on the timescale τ0, the phase
information of ACE is passed without delay onto the redox ratio NAD/NADH, and fed into the network through the
reaction GAPDH. Around ω0, the phase lead of NADH over ACE is slightly below 180◦, as observed in experiments
on glycolytic oscillations19. Supplementary Figure 8C shows the downstream metabolites from BPG to PEP oscillate
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in phase with each other for ω ≤ ω0, meaning the internal time scales for this part of the pathway are shorter than τ0.
In contrast, PYR develops a phase lead in the intermediate frequency regime, as indicated by the two black arrows in
Supplementary Figure 8C. (Note that in Fig. 5D of the Main Text, the phase lead extends to zero frequency indicating
that the width of the regime depends on the glycolytic flux.) The adaptive variable ATP also has a phase lead in the
entire low frequency region.

Supplementary Figure 8D shows the following phase relations between ATP and several other metabolites as
summarized by the equations below,

φATP = π + φADP = π + φAMP ≈ φBPG ≈ φPEP ≈ π + φGLCi. (25)

The first two relations among the nucleotides ATP, ADP and AMP simply reflect the conservation of their total
number, and that the fraction of AMP is much lower than the other two. In-phase relations apply to substrates BPG
and PEP of the ATP harvesting reactions PGK and PYK, respectively, while the out-of-phase relation is observed for
GLCi in the ATP consuming reaction GLK. The fact that these relations hold almost strictly in the entire frequency
region suggests that quasi-steady-state conditions apply to these and neighbouring reactions. It also suggests a
prominent role of ATP in synchronising the phase of metabolites distributed along the glycolytic pathway.

In summary, our numerical results suggest the following mechanism of adaptation. Under a stepwise increase of
ACE concentration, the information is passed with negligible delay to the redox ratio NAD/NADH, and then through
the delayed reaction GAPDH to BPG and PEP, transiently boosting ATP production. The transient increase of ATP
concentration then reduces the upstream glycolytic flux by inhibiting the reaction PFK, which in turn decreases the
downstream TRIO concentration, eventually returning the GAPDH flux to its pre-stimulus level. Although many
metabolites adapt, the negative feedback loop of ATP production appears to be the core. Fig. 5B in the Main Text
shows a more complete phase diagram of the response properties at other values of ACE0 and Glco concentrations,
including the region of spontaneous oscillations.

Supplementary Note 5. A minimal model for ATP autocatalysis coupled to intracellular redox state

We constructed a minimal model to test various quantitative aspects of the adaptation mechanism described above.
Reduction in the number of dynamic variables is achieved by lumping consecutive metabolites along the linear pathway
that are phase synchronised into a single variable denoting their total concentration. This is a reasonable approxi-
mation when interconversion among these metabolites is much faster than the time of interest, e.g. the oscillation
period. Supplementary Figure 9A illustrates the selected variables and their interactions. Here, y represents inter-
mediate metabolites that do not adapt (F16P and TRIO), thereby playing the role of a memory node. The variable
z represents metabolites from BPG to PEP along the glycolytic pathway. The ATP concentration is denoted by
p, while the concentration of PYR, substrate for the ACE producing reaction PDC and thus the corresponding cell
activity here, is denoted by a. Since NAD (NADH) is always in phase (out of phase) with ACE, we adopt the redox
ratio NAD/NADH as the signal s instead. Motivated by a phenomenological two-component model for glycolytic
oscillations in Ref.20, we introduce a minimal model of glycolysis with redox control as follows:

τ ẏ =
2p

1 + p2h
− (α2s+ c0)y − εy, (26a)

τ ż = (α2s+ c0)y − 2z

1 + p2
, (26b)

τ ṗ = − 2p

1 + p2h
+ 2

2z

1 + p2
− 2p2

1 + p2
. (26c)

Here, 2p/(1 +p2h) gives the reaction flux of PFK that consumes ATP and is also inhibited by ATP at high concentra-
tions (i.e., the negative feedback loop), with the inhibition strength set by the exponent h(> 1/2). The entry carbon
flux into the glycolysis pathway is assumed not to be rate limiting, e.g.., one is in a situation of high extracellular
glucose concentration. The term (α2s + c0)y gives the reaction flux of GAPDH, where c0 sets the “basal” enzyme
velocity at s = 0. Leakage of TRIO into the side branch is represented by εy. The term 2z/(1 + p2) gives the reaction
flux of PYK (and also PGK), which produces ATP but is also inhibited by ATP. In Equation (26c), the stoichiometric
factors 1 and 2 in the first two terms on the right-hand-side correspond to the ATP consumption and production
upstream and downstream of TRIO, respectively. ATP consumption by the cell outside of glycolysis (e.g., ATPase
activity) is modelled by the term 2p2/(1+p2), which grows with the ATP concentration until saturation at a maximal
value 2. The output variable a (PYR) is produced by the same flux that produces p (ATP) and degraded at a constant
rate α1,

τ ȧ =
2z

1 + p2
− α1a. (26d)
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The glyoxylate shunt GLYO, which is active at ACE0 ' 0.2 mM or above in the full model, is turned off. For
simplicity, we have chosen the time constants on the left-hand-side of the equations to be the same. As we show
below, this choice is adequate for recovering the main low frequency properties of the full model.

Supplementary Figure 9B shows the response of the dynamical variables to a sinusoidal redox variation centred
around s0 = 0.04. Except the buffer variable y, all other variables show adaptive behaviour, with a gaining a phase
lead of 90◦ over p. For comparison, we show in Supplementary Figure 9C the response properties of corresponding
metabolites in the full model in the adaptive regime, which are indeed quite similar. We have examined the response
properties of the minimal model at other values of s0 and identified four qualitatively different regimes as shown in
Supplementary Figure 9D. As in the case of the full model with sufficient glucose (Main Text, Fig. 5B), spontaneous
oscillations (i.e., limit cycle solution) occur at intermediate values of s0, flanked by adaptive but non-oscillatory
regions.

We note in passing that the two-component model of Chandra et al.20 also exhibits spontaneous oscillations when
the rate constant k of the pyruvate kinase reaction (PYK in Supplementary Figure 9A) takes on intermediate values.
As k affects the delay time of the negative feedback control in ATP production, in this sense it plays a similar role as
s0. However, our model contains an additional buffer node TRIO which is necessary for the adaptive behaviour seen
in Supplementary Figure 9. We have also made the ATP consumption rate dependent on the ATP concentration to
eliminate certain pathological aspects of the Chandra et al. model at low values of p. Furthermore, our numerical
analysis suggests that a sufficiently small but finite adaptation error ε associated with low flux diversion is needed to
reproduce the response diagram Supplementary Figure 9D. On the high (oxidative) end of s0, the reaction GAPDH
drives down y (TRIO) and hence the flux of the side reaction, making the system adaptive even when ε ∼ 1.

Comparing the response diagrams of the minimal model (Supplementary Figure 9D) and of the full model at high
extracellular glucose concentrations (Main Text, Fig. 5B), we see that the adaptive regime on the oxidative side is
restricted to a much narrower region in the latter case. Upon a detailed investigation of the full model we found that,
at higher values of ACE0, the side reaction GLYO is activated. Shutting down the reaction, we obtained a response
diagram similar to that of the minimal model (Supplementary Figure 10). The reaction GLYO uses NAD as cofactor
and consumes ATP (see Supplementary Figure 4). With regard to the change in NAD/NADH ratio upon an upshift
of ACE, it has an opposite effect as compared to ADH. This and ATP consumption by GLYO leads to a sign reversal
in the transient response of ATP to ACE upshift at ACE0 ' 0.2 mM in the full model (Fig. 5B in the Main Text).
Inhibition of GLYO eliminates the sign switch and makes PYR adapting to ACE over a much larger region of the
phase diagram (Supplementary Figure 10).

Supplementary Figure 11 shows representative time courses of the PYK reaction flux to a stepwise ACE signal,
computed using the original and modified glycolysis model, as well as the minimal model. Concentration of its
product, PYR, is found to be proportional to the PYK reaction flux in all three models, i.e., the degradation rate
of PYR is a constant. The original and modified models exhibit nearly identical adaptive response on the low ACE
(reductive) side, but differ on the high ACE (oxidative) side. In the latter case, the PYK flux is significantly higher
and also non-adaptive when the glyoxylate shunt (GLYO) is on. Further numerical investigations of the full model
with blocked GLYO reaction show that it shares the following features of the minimal model as the oxidation level
increases: 1) the frequency inside the oscillatory regime increases; 2) (mean) p (ATP) and z (BPG, P3G, P2G, and
PEP concentrations) increase by a moderate amount; 3) y (TRIO and F16P concentrations) decreases; 4) a (PYR
concentration) first increases, then decreases. Experimental time-course measurement with blocked glyoxylate shunt
will serve to validate or improve the model assumptions.

Supplementary Note 6. A model for glycolytic oscillations in yeast cell suspensions

To study collective oscillations in a population of cells whose internal dynamics follows Eqs. (26), we adopt the
following signal dynamics as in Ref.21:

τsṡin = α1a− kinsin −D(sin − sex), (27a)

τsṡex = ρD(sin − sex)− kexsex. (27b)

Here sin and sex are the intracellular and extracellular signal concentration, respectively; D is the membrane per-
meability of the signalling molecule; kin and kex are the intracellular and extracellular signal degradation rate; and
ρ is the volume fraction of yeast cells, which increases with the cell density, and saturates at 1. Hereafter, we call ρ
the cell density directly. In the steady-state, the extracellular signal strength (i.e., acetaldehyde concentration) is a
function of ρ and D.

Let us first consider the situation of fast equilibrium between sin and sout. Previously, Silvia De Monte et al.
proposed a diffusion timescale τs ≈ 0.003 s by assuming a quasi-stationary concentration profile and that ACE
molecules need to diffuse across a spherical shell with an inner radius r1 = 3 µm and an outer radius r2 = 6.5 µm22.
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This diffusion timescale is much smaller than the oscillation period of 37 s. Assuming the time for an ACE molecule to
cross the cell membrane is of the order of 1 s or less, we obtain the following approximate equation for s = (sin+sex)/2,

τsṡ =
ρ

1 + ρ
α1a−

(ρkin + kex

ρ+ 1

)
s. (28)

Up to corrections of order ε, the stationary state of the dynamical system defined by Eqs. (26) and (28) is given
approximately by,

p ≈ 1, z ≈ 1, y ≈ 1

α2s+ c0
, a ≈ 1

α1
, s ≈ ρ

ρkin + kex
. (29)

The signal strength increases with the cell density and saturates at 1/(kin + kex). At small but finite ε, corrections
to the above expressions become significant at large y or small s, where the side reaction G3PDH in Supplementary
Figure 4 is activated to divert the glycolytic flux. In the numerical studies presented below, we set the two ACE
degradation rates kin and kex to be small. The signal strength s varies over a broad range as the cell density ρ
increases.

Supplementary Figure 12 shows numerical solutions of the coupled minimal model at four selected ρ values. Except
the case at ρ = 0.01, oscillations of s and the intracellular variables are seen. In Supplementary Figure 13, we plot
the oscillation amplitudes and time-averaged values of s and a against the cell density ρ. From the lower panel of
Supplementary Figure 13A we see that, for the signal dynamics chosen, the lower adaptive regime in Supplementary
Figure 9D is mapped to a narrow interval of cell density 0.003 < ρ < 0.013. From Supplementary Figure 12, we see
that onset of collective oscillations in the coupled system takes place somewhere between ρ = 0.01 and 0.014. More
detailed studies indicate that the transition is not the expected Hopf bifurcation type, but instead emergence of a
limit cycle at finite amplitude. Similar behaviour was seen in the study of the full kinetic model (see Fig. 10 in16).
On the other hand, experimental work seem to support the Hopf bifurcation scenario22,23. The discrepancy could be
due to cell-to-cell variability in the experimental system.

Beyond the onset point, oscillation amplitudes vary continuously with the cell density. For ρ > ρc = 0.34, the
time-averaged value of s falls in the upper adaptive regime in Supplementary Figure 9E. Since the cell density here
already exceeds the threshold value required for collective behaviour of adaptive units, oscillations continue.

Finally, we present numerical results demonstrating the effect of a slower cross-membrane transport of acetaldehyde
on the collective dynamics. The system dynamics is defined by Eqs. (26) for individual cells (with s = sin) together with
Eqs. (27) for the intracellular and extracellular signal concentrations. Supplementary Figure 14 shows the oscillation
amplitude of sin together with the time-averaged values of sin and sout at selected values of D. At D = 100, sin

and sout are nearly identical and the system behaviour is essentially the same as described above under the fast
equilibrium assumption. At D = 1, the time-averaged value of sext is noticeably smaller than that of sin, indicating
a significant gradient of acetaldehyde concentration across the cell membrane. Nevertheless, collective oscillations via
DQS continue at all cell densities. As we further reduce D, DQS stops at large cell densities, as illustrated by the
case for D = 0.4. Collective oscillations disappear at D = 0.1. Here, sin remains high due to the slow intracellular
degradation rate kin, which places the single-cell dynamics in the upper adaptive regime even when the cell is isolated.
However, the phase delay across the cell membrane changes the response properties of the cell to external signal
variations. In this case, sin should be considered as the sender of the external signal but as one can see from Eq.
(27a), the adaptation (phase lead) of a to sin does not translate to phase lead of sin to sex when D is small. The
latter is required for the adaptation route to collective oscillations.

Now, we apply our linear response theory to predict the disappearance of DQS in this system at D = 0.4, where
the oscillation amplitude decreases continuously to zero at large cell densities (Supplementary Figure 14). The
onset condition cannot be predicted from this theory as collective oscillations emerge first through synchronisation
of individual oscillators. Mapping this model to our generic framework, the intracellular signal sin is the “activity”,
while the extracellular signal sex is the mediating signal. Absorbing the contribution of cell density into the signal
response, i.e.,

R̃sex(ρ, ω) ≡ s̃ex

s̃in
=

ρD

kex − iωτs + ρD
, (30)

as computed from Equation (27b) using Fourier transform, the self-consistency for collective oscillations in this example
requires

φsin(ρc, ωc) = −φsex(ρc, ωc), |R̃sin(ρc, ωc)R̃sex(ρc, ωc)| = 1. (31)

A simple form of signal relay efficiency no longer exists due to the nonlinear effect of cell density on the signal spectrum.
Here, R̃sin ≡ s̃in/s̃ex measures how an individual cell, defined by Equation (26) and Equation (27a), responds to a
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periodic perturbation of sex at frequency ω. As glycolysis is a nonlinear process, R̃sin also depends on the average
level s̄ex of extracellular signal at which small periodic stimulation is superimposed. As we are more interested in
the response spectrum at its natural context of interacting populations, we perturb the cell at s̄ex determined from
the population dynamics at a given cell density ρ. Hence, the signal-level dependence of R̃sin translates into cell-

density dependence. Given the numerically computed two-dimensional spectrum R̃sin(ρ, ω) and R̃sex(ρ, ω), the critical
(fixed) point ρc can be found via numerical iteration. At the critical cell density ρc, we expect the two equations
in Equation (31) to be satisfied at the same frequency. This is indeed observed in Supplementary Figure 15A. Note
that the phase shift φsin is positive only in the intermediate frequency regime, unlike the case for typical adaptive
variables seen in other examples in this paper. While φsin has a phase-leading regime induced by the upper-stream
adaptive variable a, sin may not necessarily be adaptive to sex, especially at large D, where sin and sex would be
almost identical at any time. The predicted critical cell density and frequency agree well with results from direct
simulation of the population dynamics (Supplementary Figure 15B).

In summary, under fast equilibration between intracellular and extracellular acetaldehyde concentrations, the cou-
pled system exhibits collective oscillations over a broad range of cell densities, encompassing the adaptive and oscil-
latory regimes of a single cell. Onset of collective oscillations at low cell densities exhibit complex behaviour due to
the assumed sensitivity of the reaction GAPDH to the NAD/NADH ratio. Delay in the cross-membrane transport
of acetaldehyde weakens adaptation of intracellular metabolite concentrations to change in the extracellular acetalde-
hyde concentration, and may eliminate collective oscillations altogether when the delay is too long13. At moderate
delays, rise in the intracellular acetaldehyde concentration brings individual cells to the oscillatory regime even when
in isolation. The enhanced oscillation amplitude at D = 1 and low cell densities seen in Supplementary Figure 14,
however, is obtained under the assumption that all cells in the population behave identically. This behaviour is suscep-
tible to cell-to-cell variations as well as temporal noise in intracellular dynamics. As D decreases further, an isolated
cell exits from the oscillatory state and moves into the upper adaptive region, as shown in the last two columns in
Supplementary Figure 14. Collective oscillations at D = 0.4 is attributed entirely to DQS. Our model study exposes
this and other subtleties that can affect interpretation of collective oscillations. The specific effects we identified in
this work could serve to guide the design of future experiments where various model parameters can be controlled
quantitatively, e.g., kex for extracellular degradation rate of acetaldehyde by adjusting the flow rate in microfluidic
setups17.
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