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In tissue development, regeneration and disease, cells differentiate 
into distinct, reproducible phenotypes. A ubiquitous challenge 
in studying these processes is to order events occurring during 

differentiation1–3 and to identify events that drive cells toward one 
phenotype or another. This challenge is common to understanding 
mechanisms in embryo development, stem cell self-renewal, cancer 
cell drug resistance and tissue metaplasia1–3.

At least two observational strategies help order cellular events. 
Single-cell genome-wide profiling, such as by single-cell RNA 
sequencing (scRNA-seq), offers a universal and scalable approach 
to observing dynamic states by densely sampling cells at differ-
ent stages3–10. However, scRNA-seq alone does not identify which 
early differences between cells drive or correlate with fate2,11–13. 
Conversely, lineage tracing offers a complementary family of meth-
ods that can clarify long-term dynamic relationships across multiple 
cell cycles. To carry out lineage tracing, individual cells are labeled 
at an early time point1–3. The state of their clonal progeny is analyzed 
at one or more later time points (Fig. 1a).

Recently, several efforts from us and others have integrated lin-
eage tracing with single-cell RNA sequencing (hereafter LT-scSeq) 
using unique, heritable and expressed DNA barcodes2,12,14–19. These 
technologies identify cells that share a common ancestor and 
define their genomic state in an unbiased manner. LT-scSeq experi-
ments have been used to successfully identify when fate decisions 
occur12,15, find novel markers for stem cells18 and reveal pathways 
that control cell fate choice15,18. The simplest of these methods labels 
cells at one time point12 (Fig. 1b); more complex methods allow the 
accumulation of barcodes over successive cell divisions to reveal the 
substructure of clones2,12,14–20 (Fig. 1c).

Emerging LT-scSeq methods have been successful at reveal-
ing regulators of cell fate15,18 and the fate potential of early pro-
genitors12,15, but they also present challenges that might limit their 
utility in practice. At least five technical and biological challenges 

affect experimental design and interpretation (Fig. 1f): stochastic 
differentiation and variable expansion of clones21 (Fig. 1f(i)); cell 
loss during analysis (Fig. 1f(ii)); barcode homoplasy wherein cells 
acquire the same barcode despite not having a lineage relationship2  
(Fig. 1f(iii)); access to clones at only a single time point22,23  
(Fig. 1f(iv)); and errors in determining the state of clonal progeni-
tors due to a lag time between labeling cells and the first sampling 
(‘clonal dispersion’) (Fig. 1f(v)). Addressing these problems should 
greatly simplify the design and interpretation of LT-scSeq assays 
and put them in the hands of a wider research community.

In this study, we advanced on recent efforts24,25 to develop robust, 
computationally efficient and generalizable approaches to analyze 
LT-scSeq experiments. We begin with a model of clonal dynam-
ics in which cells divide, differentiate or are lost from the sampled 
tissue in a stochastic manner, with rates that are state dependent 
(Supplementary Fig. 1a). We use this model to learn from the data 
the fraction of progeny of cells, initially in one state, which are 
found to occupy a second state after some time interval (Fig. 1d and 
Supplementary Fig. 1b,c). Our approach captures differentiation 
bias and fate hierarchies and can reveal genes whose early expres-
sion is predictive of future fate choice.

Results
Dynamic inference from clonal data with state information. A 
formalization of dynamic inference is to identify a transition map, 
a matrix Tij(t1, t2)9. We define Tij(t1, t2) specifically as the fraction 
of progeny of a cell, initially in some state i at time t1, that occupies 
state j at time t2 (Fig. 1d and Supplementary Fig. 1c). This transi-
tion map averages the effects of cell division, loss and differentiation 
(Supplementary Fig. 1d), but it nonetheless proves useful for several 
applications9 (Fig. 1d).

We make two assumptions about the nature of biological dynam-
ics to constrain inference of the transition map. We assume the 
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map to be a sparse matrix, because most cells can access just a few 
states during an experiment (Fig. 1e, left). Additionally, we assume 
the map to be locally coherent, meaning that cells in similar states 
should share similar fate outcomes (Fig. 1e, right). These constraints 
together force transition maps to be parsimonious and smooth, 
which we reasoned would make them robust to practical sources of 
noise in LT-scSeq experiments (Supplementary Fig. 1e).

We formalize transition map inference starting from a model of 
stochastic division and differentiation dynamics in Supplementary 
Notes 1–4, leading to the optimization problem formalized in 
Fig. 2a. The resulting algorithm is rooted in past work as follows: 
without assuming coherence (α = 0 in Fig. 2a), the minimization 
takes the form of Lasso26, an algorithm for compressed sensing. 
Building on this, fused Lasso27 imposes uniformity between vec-
tors jointly subject to Lasso regression. CoSpar now extends the 
idea of joint optimization from vectors to graphs, and it enforces 

coherence (minimizing a second derivative of T) rather than  
uniformity (minimizing a first derivative). An iterative, heuris-
tic approach approximates the CoSpar optimization efficiently  
(Fig. 2b), without explicitly defining α. As inputs, CoSpar requires 
a barcode-by-cell matrix I(t) that encodes the clonal information 
at time t and a data matrix for observed cell states (for example, 
from scRNA-seq). Clonal data might have nested structure reflect-
ing subclonal labeling (Supplementary Note 4). CoSpar usage is 
schematized in Supplementary Figs. 3 and 4 and detailed in https://
cospar.readthedocs.io/.

CoSpar is formulated assuming that we have information on the 
same clones at more than one time point. More often, one might 
observe clones at only a later time point t2. For these cases, inference 
is not fully constrained, as one must learn both the transition map T 
and the initial clonal data I(t1) (Fig. 2c and Methods). We approxi-
mate a solution additionally constrained by a minimum global 
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Fig. 1 | integrative analysis of lineage tracing and transcriptome data. a, LT-scSeq experiments simultaneously measure cell phenotypes and clonal 
lineages (indicated by colors). b, c, LT-scSeq assays encode lineage information with static DNA barcodes or cumulative barcoding. d, CoSpar unifies 
analysis of different experimental designs to infer transition maps (see text) to reveal fate boundaries, lineage hierarchy, putative markers and putative 
fate determinants. Here and below, the shaded gray regions schematically show a manifold of observed single-cell transcriptomic states. e, Two key 
assumptions constrain dynamic inference by CoSpar. f, Stereotypical challenges in clonal analysis: (i) single labeled cells can give rise to clones with a wide 
dispersion in size; (ii) LT-scSeq loses cells during analysis due to inefficient cell capture or loss of barcode information, leading to loss of clonal structure; 
(iii) barcode homoplasy occurs when cells from different clones present the same barcode due to experimental limitations; (iv) clonal progenitors are 
unobserved when clones are seen only upon tissue dissociation; (v) early-time clonal dispersion introduces errors in identifying the ancestor state of each 
clone (Supplementary Fig. 2).
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transport cost9,25 (Supplementary Note 5). We later show that this 
approach is robust to initialization for the datasets analyzed (Figs. 4 
and 5 and Supplementary Figs 7e and 10d). Finally, coherence and 
sparsity provide constraints to the simpler problem of predicting 
dynamics from state heterogeneity alone without lineage data9. We 
extended CoSpar to this case. Thus, CoSpar is flexible to different 
experimental designs, as summarized in Fig. 1d.

In this and subsequent sections, we show that CoSpar recapitu-
lates dynamics and is robust to the challenges typical of LT-scSeq 
(Fig. 1f) and to run parameters. We first show robustness to barcode 
homoplasy and early-time clonal dispersion using computer simu-
lations. We modeled cells progressing through a sequence of gene 
expression states either toward a single fate (Fig. 3a) or bifurcating 
into two fates (Fig. 3e), with clones sampled in a manner represen-
tative of LT-scSeq experiments12,15. With 1,000 clones—typical of 
real experiments—mean transition rates inferred by CoSpar were 
within 3 standard deviations of the actual transition rate 98% of 
the time (true positive rate (TPR) > 98%; Fig. 3d), and the distri-
bution of progeny fates showed 85% Pearson correlation to ground 
truth (Fig. 3i). Inferences remained similarly accurate with as few 
as 30 barcodes (Fig. 3d) and across a wide range of parameter val-
ues of the CoSpar algorithm (Supplementary Fig. 5d–f). CoSpar 
was robust to barcode homoplasy and only detectably lost accuracy 
when all lineage barcodes mixed more than ten clones on average 
(Fig. 3a–d). This degree of homoplasy is far higher than expected 
in most experiments. Furthermore, CoSpar was robust to early time 
clonal dispersion, simulated by sampling clones at increasing times 
after barcoding (Fig. 3f–i). Conversely, approaches used in previous 
work, which average the transitions between cells observed in each 
clone at different time points12, are severely affected by both lag time 
and barcode homoplasy (Fig. 3d,g,i).

CoSpar predicts early fate bias in hematopoiesis. We applied 
CoSpar to published datasets from three independent experiments. 
The first experiment tracked hematopoietic progenitor cells (HPCs) 
differentiating in culture, with clones sampled on days 2, 4 and 6 
after barcoding (Fig. 4a,b)12. During this time, cells progressed from 
a heterogeneous pool of HPC states into ten identifiable differenti-
ated cell types. We used all clonal data to generate a ground truth 
for the early fate bias toward either the monocyte or neutrophil fate, 
using the method from Weinreb et al.12 (Fig. 4c).

As a baseline for comparison, we applied CoSpar to predict HPC 
fate bias using state information alone (Fig. 4e). For this and fur-
ther comparisons, we report the accuracy of fate prediction using 
Pearson correlation of predicted fate bias with that observed using 
all clonal data (‘ground truth’). Even without access to any clonal 
data, CoSpar could resolve early fate bias at a performance close to 
the upper bound defined by cross-validation of the ground truth 
data (CoSpar correlation R = 0.69; ground truth R = 0.72) (Fig. 4e,g 
and Supplementary Fig. 6a). This performance reflects improve-
ments from enforcing coherence and sparsity (R = 0.51–0.54 before 
CoSpar; Fig. 4d and Supplementary Fig. 7f), robust across a wide 
range of algorithm parameters (Supplementary Fig. 5a,b). However, 
the prediction based on state information alone is limited because it 
is sensitive to the choice of distance metric used in analysis (Fig. 4g 
and Supplementary Fig. 7e).

Clonal information eliminated the sensitivity to distance metric. 
To show this, we applied CoSpar to data restricted in time or in 
depth or depleted of lineage-restricted clones. Using even a single 
time point of clonal data (day 6), CoSpar recovered early fate bias 
(Fig. 4f; R = 0.68), and it did so robustly over a range of parameters 
and choices of distance metrics (Fig. 4g and Supplementary Fig. 7e). 
Furthermore, it recovered the differentiation hierarchy seen in the 
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with the resulting cell types (Slc14a1 for Mk30 and Thy1 for Ba31; 
Fig. 4l) and with the transcription factor Cebpa that regulates Eos 
and Ba differentiation29. We identified 377 known and novel puta-
tive fate-associated genes (Fig. 4m and Supplementary Table 1). 
By contrast, the original method used to analyze these data finds 
very few genes distinguishing BEMPs and MEPs (Supplementary  
Fig. 7g–i). Differences between the putative BEMPs and MEPs are 
not fully identifiable without clonal information: using only state 
information, CoSpar and WaddingtonOT9 recover only 25–60% of 
the fate-associated genes (Supplementary Fig. 7j,k). This analysis 
highlights that CoSpar can identify fate-predictive genes from lim-
ited LT-scSeq data.

CoSpar reveals early fate bias in reprogramming. The second 
experiment that we analyzed tracked cells during the reprogram-
ming of fibroblast cells over 28 d into endodermal progenitors  
(Fig. 5a)15. In this experiment, cells initially expand, with many cells 
lost due to senescence or cell death. After 28 d, 30% of resulting 
cells were successfully reprogrammed. Clonal analysis with cumu-
lative barcoding was used to identify these cells early and predicted 
features that regulate their fate (Fig. 5b,c). We used clones strongly 
enriched in one of the two fates, identified by the original study, to 
generate the ground truth for early fate bias, and we then used it to 
benchmark CoSpar.

correlation of clonal barcodes across all cell types (Supplementary 
Fig. 7c,d). When using a subsampled dataset from the top 15% most 
dispersed clones as ranked by day 4 intra-clone distance (Fig. 4b), 
CoSpar performed similarly well and outperformed the method 
from Weinreb et al., which was used to analyze these data originally12 
(Fig. 4h,i and Supplementary Fig. 7a,b). Thus, CoSpar successfully 
facilitates analysis of clones at a single time point or using a frac-
tion of the original data collected in this example. Benchmarking 
against two recent methods (LineageOT and SuperOT)24,25 revealed 
that CoSpar predictions were more accurate and remained so when 
training on sparse data or using dispersed clones (Supplementary 
Figs. 8 and 9).

These benchmarks suggest that CoSpar should be able to resolve 
early fate biases in transcriptomic space and predict new fate regulators 
of known fate biases. We investigated fate biases in the Gata1+ states 
that give rise to five mature fates: megakaryocyte (Mk), erythrocyte 
(Er), mast cell (Ma), basophil (Ba) and eosinophil (Eos) (Fig. 4a,k). 
In culture, Mk and Er arise from a common progenitor (MEP), and 
Ba, Eos and Ma are produced by a different progenitor (BEMP)28,29. 
Although molecular signatures of fluorescence-activated cell sorted 
MEP have been explored recently30, less is known about the tran-
scriptomic identity of BEMPs. Applying CoSpar, we predict an 
early fate decision boundary between MEP and BEMPs (Fig. 4j,k),  
which correlates with the early expression of genes later associated 
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transcriptomic identity of Gata1+ Mk-Er and Ma-Ba-Eos progenitors using CoSpar. j, Representative values of the inferred transition map for 2-d transitions 
from four example cell states (indicated by *). k, Heat map of predicted progenitor bias toward Mk-Er and Ma-Ba-Eos fates, overlaid on the state 
embedding. l, Expression of selected genes correlating strongly with predicted fate bias. m, Expression heat map for selected genes differentially expressed 
between the Mk-Er and Ma-Ba-Eos progenitors. The full list of fate-associated genes is provided in Supplementary Table 1. In g and i, white points indicate 
median; black bars span first to third quartiles.
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To evaluate CoSpar, we revisited this experiment after discarding 
90% of clones, specifically retaining clones that show the least bias 
in reprogramming outcomes. Using these severely downsampled 
data consisting of dispersed clones, CoSpar still recapitulated 73 of 
100 genes previously identified to discriminate reprogrammed and 
failed cells (Fig. 5f), including genes previously showing strong pos-
itive and negative association with reprogramming success (Apoa1, 
Spint2, Col1a2 and Peg3) as well as Mettl7a1, which was found to 
improve reprogramming15. These genes could be associated with 
fate bias using as few as ten clones, even when deliberately select-
ing clones with minimal fate bias (Fig. 5d,e and Supplementary  
Fig. 10b). By contrast, the analytical approach used in the origi-
nal study15 failed to identify fate-predictive gene expression after 
such severe data reduction (Fig. 5e,f and Supplementary Fig. 10b). 
Furthermore, CoSpar performed robustly when using only clonal 
data from the final time point of the experiment (Fig. 5g,h and 
Supplementary Fig. 10c–e), and the result is robust whether we 
explicitly consider the nested clonal structure or not (Supplementary 
Fig. 10f–h). CoSpar was also robust to varying degrees of clone size 
heterogeneity and to cell dropout (Fig. 1f), as seen by subsampling 
clones or cells per clone (Supplementary Fig. 10j–l).

As in hematopoiesis, it is instructive to see what information on 
fate choice can be learned even without clonal relationships. When 
applying CoSpar without clonal data, we found that CoSpar could 
predict the same early fate biases (Fig. 5g, middle) but is again sensi-
tive to the distance metric used (Fig. 5h). A different distance metric 
performs best here from the hematopoiesis dataset, suggesting that 
there is no simple ‘best practice’ approach to dynamic inference in 
the absence of clonal data. Indeed, we are able to select the best met-
ric here only because we are guided by the clonal information.

Finally, we applied CoSpar to predict fate bias at the earliest 
available time point after reprogramming is initiated (day 3). It is 
appreciated that fate choice occurs early during reprogramming, 
because subclones of cells labeled at day 3 acquire similar fates at 
later time points15. But which cells on day 3 reprogram successfully 
remains unknown as only seven clones labeled on day 3 were shared 
with other time points. CoSpar identified ~20% cells at day 3 with 
more than 80% putative bias toward reprogramming (Fig. 5i). These 
cells show a distinct transcriptional signature, with early expression 
of the transgene FoxA1-HNF4a used to induce reprogramming 
as well as Apoa1 and early downregulation of Col1a2 and Dlk1  
(ref. 15) (Fig. 5j). We also identified multiple genes predicted to cor-
relate with fate bias on day 3, whose significance in reprogramming 
has not been previously established, and that might offer targets for 
future investigation of early reprogramming success (Fig. 5k and 
Supplementary Table 2).

CoSpar predicts early fate bias during lung-directed differentia-
tion. In the third experiment, human induced pluripotent stem cells 
(iPSCs) were differentiated into distal lung alveolar epithelial cells 
(induced alveolar epithelial type 2 cells (iAEC2s))22,32. Here, clonal 
and transcriptomic information were profiled jointly on day 27 after 
initial barcoding on day 17, and a separate time course experiment 
produced scRNA-seq data for six time points, including days 17 and 
21 (Fig. 6a). In this study, Hurley et al. reported the existence of 
clones derived from multipotent cells on day 17 but did not inves-
tigate their fate biases22. A re-examination of the clonal data, how-
ever, suggests strong fate biases as early as day 17. Of the 272 clones, 
25% were enriched in either the iAEC2 or non-iAEC2 clusters (false 
discovery rate (FDR) = 0.01), and clonal compositions differed sig-
nificantly from that of randomized clones (Fig. 6b). Accordingly, 
clonal representation of iAEC2s anti-correlates with other fates 
(Supplementary Fig. 11b,c). We investigated signatures that could 
predict effectors of fate bias among day 17 progenitors.

Applying CoSpar, we assigned a putative fate bias to each of 
the cells seen on day 17. CoSpar predicts some cells to be strongly 

biased in cell fate (Fig. 6c) and others to be unbiased and multi-
potent; the latter strongly overlap with highly proliferating cell 
states on day 17 and are consistent with large clones hosting mul-
tiple endodermal lineages on day 27 (Supplementary Fig. 11d). As 
a control, we expected weaker fate biases earlier in differentiation, 
which is confirmed by applying CoSpar to cells 2 d earlier (day 
15; Supplementary Fig. 11e–g). Of genes differentially expressed 
between the two biased populations on day 17, we identified several 
established transcription factors that regulate lung differentiation: 
CEBPD, NKX2-1, SOX9 and SOX11 (Fig. 6d,e and Supplementary 
Table 3)22,33–35.

We tested a prediction made using CoSpar relating fate bias to 
cell state at day 17. On this day of the differentiation protocol, leu-
kemia inhibitory factor receptor (LIFR) showed reduced expres-
sion in cells biased toward non-iAEC2 fates and high expression in 
cells with a low bias to any fate and which also express proliferative 
markers (Fig. 6e). Previous work has shown that its ligand, LIF, is 
expressed in the adult mouse distal lung36, and, in fetal rat lungs, 
LIF is expressed in developing lung epithelial and mesenchymal 
cells. Although LIF supplementation or repression in an explanted 
fetal mouse lung model altered lung growth and branching mor-
phogenesis37, whether LIF affects the proliferation or differentia-
tion of developing lung epithelial progenitors remains unknown. To 
test if LIF influences developing lung endoderm, we used the same 
directed differentiation protocol to generate lung epithelial pro-
genitors (expressing NKX2-1) and subsequently iAEC2s using BU3 
NGST, an iPSC line. This iPSC line carries a green fluorescent protein 
(GFP) reporter targeted to the endogenous lung epithelial selective 
NKX2-1 locus and a tdTomato reporter targeted to the SFTPC locus 
to identify iAEC2s22,32. After purifying NKX2-1GFP+ cells on day 15, 
we added 0, 5, or 50 ng ml−1 of recombinant human LIF (rhLIF) at 
days 17–19 of differentiation, the time point at which LIFR expres-
sion levels correlate with proliferation markers and fate predictions. 
At day 29, in response to transient LIF exposure, we observed a 
3.1-fold (3.1 ± 1.4, n = 5) increase in the total cell number, suggest-
ing a strong effect of LIF on epithelial progenitor proliferation. We 
additionally observed a decrease in both the fraction and number 
of cells reaching iAEC2 fate, identified by co-expression of NKX2-1 
and SFTPC (fraction dropping to 21 ± 14% of the untreated condi-
tion and cell count dropping to 53 ± 26%; Fig. 6g–I), indicating that 
LIF biases cell fate during differentiation. This result provides con-
fidence that CoSpar predictions can identify targetable pathways in 
development and differentiation.

Discussion
We have developed a framework for systematically inferring 
dynamic transitions by integrating state and clonal information. 
It extends the problem of compressed sensing. Our method takes 
advantage of reasonable assumptions on the nature of biologi-
cal dynamics: that cells in similar states behave similarly and that 
cells limit their possible dynamics to give sparse transitions. Using 
published datasets, we demonstrated that coherent sparse optimiza-
tion relates molecular heterogeneity of cells to their future fate out-
comes in a manner that is robust to typical sources of experimental 
error, using as little as 5–10% of data originally collected in previ-
ous experiments. The computational methods used in each original 
study to analyze clonal data were sensitive to such data reduction. 
CoSpar also successfully predicted early fate biases in these datasets 
using clonal information from only a single time point. When clonal 
data were removed entirely, results were sensitive to the choice of 
distance metric, and no single approach optimally inferred fate 
bias across all datasets. Both constraints of coherence and spar-
sity improved fate predictions, especially when the clonal data are 
highly dispersed (Supplementary Fig. 5a–c).

The robustness of CoSpar could greatly simplify the design of 
LT-scSeq experiments by enabling experiments with fewer cells 

NAtuRe BioteCHNology | VOL 40 | JULy 2022 | 1066–1074 | www.nature.com/naturebiotechnology1072

http://www.nature.com/naturebiotechnology


ArticlesNATure BIoTeChNology

(Supplementary Fig. 10l), fewer clones or fewer time points. In all 
three datasets considered here, CoSpar reveals early fate boundaries  
that were not previously reported and yet are in agreement with the 
heterogeneity of key transcription factors and fate determinants. We 
predicted novel transcription factors, receptors and markers in each 
case, and they could facilitate manipulating fate outcomes, as exem-
plified here in the case of iPSC differentiation.

The examples that we analyzed specifically implement LT-scSeq 
using LARRY12,22 and CellTagging15, but CoSpar is not limited to 
these technologies. State measurements can be transcriptomic (via 
scRNA-seq or RNA fluorescence in situ hybridization (FISH)38) 
as well as proteomic and epigenomic; and lineage tracing can be 
achieved with static DNA barcodes12,22, endogenous mutations39 or 
exogenous DNA constructs that accumulate mutations over time, 
like CRISPR-based editing2,14,19,20,40. CoSpar can thus facilitate inter-
pretation of the rapidly evolving field of LT-scSeq and, thus, acceler-
ates exploration of development and disease.

CoSpar also has limitations, which directly follow from its cen-
tral assumption. First, CoSpar is still limited to learning only the 
average fate biases of observed states; it does not separate biases 
in division versus differentiation rates, and it does not distin-
guish stochastic versus deterministic clonal biases due to hidden 
variables12. By enforcing coherent fate choices between similar 

cells (Fig. 2a,b), CoSpar becomes sensitive to choices in measur-
ing cell–cell similarity and to the degree of smoothing used in  
implementing the algorithm (Supplementary Fig. 5a,f). Thus, 
CoSpar will fail to identify fate biases when heterogeneity rele-
vant to cell fate is not measured or when it is filtered out during 
data analysis or is lost due to oversampling or undersmoothing. 
In addition, when inferring progenitor bias from clones observed 
at a single late time point, CoSpar necessarily leans on state infor-
mation, and it might fail when heterogeneity in the later popula-
tion cannot be related to heterogeneity in the initial population. 
Despite these caveats, CoSpar provided sensible predictions in the 
cases examined here.

Coherent sparse optimization could prove useful for applica-
tions beyond dynamic inference. Several problems require learn-
ing locally coherent maps from few and noisy measurements. Such 
problems occur, for example, when integrating two sets of measure-
ments in the same system41,42 (batch correction and multi-omics), 
decoding spatial transcriptomes from composite FISH measure-
ments43 and inferring responses of a system to individual perturba-
tions from composite perturbation readouts44–46. Outside of biology, 
the association of measurements in one modality with sparse mea-
surements in another can occur in marketing and social networks47. 
Forcing coherence and sparsity constraints could greatly improve 

 
iAEC2 

a b

Non-iAEC2 iAEC2

Progenitor bias

0 Day17 21

scRNA-seqiPSC

27

Barcoding LT-scSeq
Exp 1

Exp 2

c

Day 21

Day 17

Day 27

d

0

1

N
orm

alized gene expression
CEBPD

NKX2-1

MSX2

iAEC2 prog

Non-iAEC2 prog

 
Non-iAEC2 

0 0.25 0.50 0.75 1.00

Progenitor bias on day 17

0

2.5

D
en

si
ty

rhLIF: 0 ng ml–1 5 ng ml–1 50 ng ml–1
g h

0

Day

17

19

29 Imaging
FACS

f

rhLIF
1

0

N
orm

alized gene expression

KLF9

iA
EC2 

pr
og

.

Non
-iA

EC2 
pr

og
.

Cyc
lin

g 
pr

og
.

iA
EC2

Non
-iA

EC2

CEBPD
YBX3
ATF4

NKX2-1
IRX3

SLC7A11
LIFR

SFRP1
CD55

KIT
CPM

PITX1
MSX2
MYCN
SOX9

SOX11
ID2

PBX1
FOXA1

SP5
TMPO

DEK
HMGB1
PARP1

e
LIF increases total cell number and reduces % iAEC2

Cycling prog.

0 5 50

2

4

6

8

10

0 5 50

0

2

4

6

D
ay

-2
9 

al
ve

ol
ar

 fr
ac

tio
n 

(%
)

(G
F

P
+
, t

dT
om

at
o+

)

rhLIF dosage, ng ml–1rhLIF dosage, ng ml–1

C
el

ls
 p

er
 p

la
te

 o
n 

da
y 

29
 (

10
0 

K
)

i

BF

NKX2-1GFP

SFTPCtdTomato

5

4

3

2

C
lo

na
l f

at
e 

bi
as

1

0
0 100 200

Size < 10
Size ≥ 10
Randomized

Clone rank

Fig. 6 | Progenitor bias during human iPSC differentiation into endodermal lineages. a, Experimental design and UMAP visualization for differentiating 
human iPSCs into iAEC2 lung cells and other endodermal cell types. b, Clones ranked by fate bias toward iAEC2 fate (bias defined as in Fig. 5d), with 
representative biased (top) and dispersed (bottom) clones shown. c, Predicted progenitor bias of cells toward iAEC2 fate on day 17 of differentiation, overlaid 
on the state embedding and shown as a histogram. Cycling progenitors are identified as cells enriched in TOP2A or MKI67 (Supplementary Fig. 11d).  
d, e, Expression on day-17 states of selected genes predicted to correlate with iAEC2 and non-iAEC2 fates. In e, expression is shown alongside the 
corresponding expression in mature cells on day 27. f–h, rhLIF treatment increases total cell number and reduces the percentage of iAEC2 cells differentiated 
from human iPSCs. f, BU3 NGST iPSCs were differentiated as previously described22, with the exception that cells were treated with 0, 5, and 50 ng ml−1 of 
rhLIF from days 17–19. g, Representative images of the cells on day 29. Scale bar, 500 µm. h, Quantification by flow cytometry of the total number of cells 
resulting after completion of the protocol (n = 5 biologically independent samples shown for each condition). i, Fraction of alveolar cells (iAEC2s; defined as 
GFP and tdTomato double positive) on day 29 at different rhLIF dosages (see Methods for details). FACS, fluorescence-activated cell sorting.

NAtuRe BioteCHNology | VOL 40 | JULy 2022 | 1066–1074 | www.nature.com/naturebiotechnology 1073

http://www.nature.com/naturebiotechnology


Articles NATure BIoTeChNology

map inference in general, reducing the cost of data acquisition and 
enabling discoveries.
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Methods
Definitions: states, transition maps and clones. To formalize the problem of 
learning biological dynamics, we first define basic terminology. The observed 
state of a cell can include information on its transcriptome, epigenome, proteome, 
metabolic state, phospho-proteome, structural organization or a combination of all 
of these. It might also include information on the environment of the cell, such as 
the transcriptome of neighboring cells and extracellular matrix composition. These 
are quantified by a set of n features, X ∈ R

n. Although X is continuous, it will be 
mathematically convenient to treat the accessible set of states as discrete. This is 
reasonable because experiments sample only a finite number of cells, so resolution 
into X is limited in practice. For convenience, we enumerate cell state as Xi or, more 
concisely, as state i. In accordance with common practice in scRNA-seq analysis13, 
we use the experimentally observed set of cell states to define the set {Xi}. Therefore, 
the number of accessible states will be the same as the number of observed cells.

In a dynamical cellular system, cells are observed to occupy a distribution 
of states at consecutive times, with Pi(t) giving the fraction of cells in state i at 
time t. We consider the finite time transition map Ti′i(t1, t2) as relating between 
experimental time points through the relationship9:

Pi (t2) =
∑

i′
Pi′ (t1) Ti′ i (t1, t2).

The goal of our analysis is to learn Ti′i(t1,t2), which, in turn, encodes 
information on the fate potential of cells in each state i and the rate by which cells 
transition between states. In typical population-sampling experiments, such as 
scRNA-seq, the transition map is shaped by the dynamics of cells and by the rates 
of cell division and loss from the tissue (Supplementary Note 1 and Supplementary 
Fig. 1d). Errors in lineage tracing affect how well we can recover the transition map 
(Supplementary Note 2).

Seminal work sought to infer Ti′i(t1,t2), from Pi'(t1), Pi(t2) only9. One can greatly 
constrain the inference problem using the dynamics of clones24,25. By clone, 
we mean a set of cell states (≥0 cells) that arise from a common ancestor cell. 
Experimentally, we use ‘clone’ to mean a set of (≥1) cell states that share the same 
barcode, a genetically heritable element. CoSpar works with data generated from 
both static and cumulative barcoding. For cumulative barcoding, each unique 
mutation or integration is considered a barcode, such that each cell can express 
more than one barcode. For more details, refer to Supplementary Note 4.

Data structures. Denoting the number of cells at time t as Nt, and the number of 
clones as M, we define:

I(t) ∈ {0, 1}M×Nt: barcode-by-cell association matrix for the observed clonal 
data at time t, with discrete entries 0 or 1 indicating whether a cell contains the 
corresponding barcode or not. We use Imi(t) to indicate its value for m-th clone at 
state i. For convenience, we sometimes use It to represent the matrix.

I
m
t : the set of cell states at time t that belong to m-th clone.

S(n) (t) ∈ [0, 1]Nt×Nt: state similarity matrix among Nt cell states at time t. n 
indicates the depth of graph diffusion used to create the similarity matrix.

T ∈ R
Nt1×Nt2: matrix of transition probability from Nt1 cell states at t1 to Nt2 

states at t2.
π ∈ R

Nt1×Nt2: transition matrix that allows only intra-clone transitions 
(inter-clone transition amplitudes are set to 0).

PCt2
∈ [0, 1]Nt1: fate map—that is, a vector of probability for each initial cell 

state to transition to cluster Ct2 at time t2.
ndf(l): the depth n of graph diffusion (df) to create S(n) at l-th iteration of CoSpar.
ncs: maximum number of iterations to carry out the CoSpar algorithm, unless 

the stopping criterion is reached.

Dynamic inference with CoSpar. CoSpar seeks to minimize an objective 
function with a close connection to compressed sensing (Fig. 2a). A heuristic, 
efficient algorithm implements the optimization through an iterative procedure. 
Referring to Fig. 2b, in each iteration, we (1) threshold the map to promote 
sparsity; (2) enforce clonal constraints by setting inter-clone transitions to be 0 and 
performing clone-wise normalization; and (3) locally average the transition map 
in high-dimensional state space to promote coherence. These steps are described 
by the following pseudo-code. The mathematical connection between our 
implementation and the objective function at Fig. 2a is detailed in Supplementary 
Note 3. Users need to provide the barcode-by-cell association matrix It and the 
count matrix from LT-scSeq measurements (for building similarity matrix S). Full 
implementation and user guide are available at https://cospar.readthedocs.io.

Function CoSpar (It1 , It2)
Initialization: T(0)

ij = 1 ∀i, j
For l ← 1, 2, …, ncs do
n ← ndf(l)
Build similarity matrix: S ← S(n)

π ← P
(

θ
(

T(l−1), νcs
))

Smoothing: T(l)←[S(t1)]+πS(t2)
If meani

[

Corr
(

T(l)
i· , T(l−1)

i·

)]

> 1 − ϵcs: Break
return T(l), π

Here, + is a symbol for matrix transposition. Operators θ,P and S(n) are 
defined below:

Definition of operators θ,P . Operator θ implements row-wise thresholding to 
promote sparsity:

[θ (T, ν)]ij =
{

Tij if Tij ≥ ν maxjTij

0 Otherwise

where ν ∈ [0, 1] is a parameter that tunes sparsity.
Operator P carries out clonal projection and normalization:

[P (T)]ij =
∑

m

π̃m
ij

∑

i′ j′ π̃m
i′ j′

,

where π̃m
ij = Tij if the transition i → j occurs within clone m and, otherwise,  

π̃ij = 0. The normalization penalizes large clones, which tend to be more 
heterogeneous and less informative. For the case of cumulative barcoding, these 
choices of normalization and summation over all barcodes serve to place greater 
weight on smaller subclones than on larger parent clones (see Supplementary  
Note 4 for details).

CoSpar has two outputs: the smoothed transition map T and the map π that 
allows only intra-clone transitions.

Similarity matrices S(n). We currently know of no natural choice for  
establishing the similarity of two states Xi, Xj. We found that a graph diffusion 
process48,49 recovered ground truth results well in the simulations and  
experimental downsampling analyses. CoSpar constructs a weighted k-nearest 
neighbor (kNN) graph of observed cell states from a principal component 
analysis (PCA) embedding using the method proposed by uniform manifold 
approximation and projection (UMAP)50, leading to a graph connectivity  
wij from state i to j that properly takes care of the heterogeneity of local cell  
density, with wii = 0. To make sure that transitions between two states are 
reversible, we symmetrize the connectivity: w̄ij = (wij + wji)/2. Then, the  
random walk matrix is

Mij = βδij +
(1 − β) w̄ij
∑

k w̄ik
,

where β controls the probability to stay at the original state after a unit step. We 
then introduce a family of similarity matrices:

S(n) =
[

M
n]+ .

The default method implemented in scanpy.pp.neighbors was used to construct 
the kNN graph at a specified neighbor number kcs, with β = 0.1 and kcs = 20.

Annealing steps [n1,n2,…]. CoSpar iterates through different depths n of graph 
diffusion S(n), inspired by simulated annealing for finding the optimal solution in 
a rugged energy landscape51. Specifically, we use the sequence n⃗df = [n1, n2, …] to 
indicate the depths at each iteration.

Parameter choices. The following parameters of CoSpar are adjustable:  
(1) parameters used for building the random walk matrices M(t1,2), including 
β and kcs; (2) the sequence n⃗df = [n1, n2, …] for generating annealing similarity 
matrix S(n); (3) the threshold νcs for promoting sparsity; and (4) parameters ncs  
and ϵcs used to control iteration and convergence. We found that three  
iterations are sufficient to obtain a convergent map (Supplementary Fig. 5f,g). 
Throughout this paper, we used a fixed iteration run ncs = 3, and ignored ϵcs  
for computational efficiency. We also set kcs = 20 and β = 0.1. We found that 
CoSpar is more robust to νcs than to n⃗df  (Supplementary Fig. 5d,e). We recommend 
setting νcs = 0.1–0.2 (that is, trimming away transitions weaker than 10–20%  
of the maximum inferred from clonal data) for most applications. Other 
parameters are given for each respective dataset below. The subscript cs in these 
parameters means CoSpar.

Extending CoSpar to single time clones. When clonal data are available at  
only a single time point (that is, only I(t2) is available), dynamic inference 
is implemented as shown schematically in Fig. 2c. For the raionale, see 
Supplementary Note 5.

Function Joint Inference (It2)
T(0) ← Tinit
Infer Ît1 (T(0), It2 )
T← CoSpar ( Ît1 , It2)
Return T, Ît1

These steps are defined below:

Initialize the map, Tinit. CoSpar uses Optimal Transport (OT) to construct the 
initialized map T(t1,t2) = Tinit. Given an initial state distribution at t1 and a later 

NAtuRe BioteCHNology | www.nature.com/naturebiotechnology

https://cospar.readthedocs.io
http://www.nature.com/naturebiotechnology


Articles NATure BIoTeChNology

density at t2, OT finds a map Tint that minimizes the transport cost to move the 
initial distribution to the later one. The approach is related to that developed in 
Waddington-OT (WOT)9 but with simplification. WOT generalizes OT to allow 
non-uniform growth rates for each cell state. To obtain an approximate initial map, 
we avoid this generalization as it introduces additional tunable parameters. To 
construct the OT cost matrix9, approximated by a cell–cell distance matrix, CoSpar 
offers two approaches: (1) Euclidean distance in the selected PCA space and (2) 
shortest path distance on a kNN graph of the state manifold. CoSpar accepts two 
parameters for this initialization: a kOT for constructing the kNN graph and a 
regularization parameter ϵOT .

Alternative initialization (HighVar). OT provides a reasonable initialization  
when the cell–cell distance matrix contains sufficient information to match  
the state heterogeneity at selected time points. When this assumption fails  
(for example, owing to large differentiation effects over the observed time  
window or batch effects), we initialize T using an alternative approach, in  
which we generate an artificial clonal matrix based on highly variable genes  
at both time points, (̂It1 ,̂ It2 ) ← HighVar, and then use it to calculate the initial 
transition map, Tinit ← CoSpar(̂It1 , Ît2 ). For further details, see Supplementary 
Note 6. We found that this method can integrate datasets across different 
experiments that have strong batch effects, as demonstrated using the dataset on 
iPSC differentiation into iAEC2 cells reported in Fig. 6 of the paper. In this dataset, 
days 17 and 21 are from one experiment without lineage tracing, and day 27 is 
from a separate experiment; we found strong batch effects here, and the initialized 
map based on OT resembled a random initialization.

Inferring the clonal matrix Ît1(T, It2). Given a transition map T, CoSpar updates 
the clonal matrix Î(t1) based on the principle of maximum likelihood:

Ît1 = argmax
It1

P(It1 |T, It2 ),

under two constraints:

 1. All initial states are clonally labeled—that is 
∑

i,m Îmi (t1) = Nt1.
 2. The fraction of cells with a given clonal barcode structure is constant over 

time. Note that this constraint represents a simplification as all clones initially 
derive from single cells and only develop to be heterogeneous in size over 
time. We provide an alternative, enforcing each clone to have the same size at 
t1, which is true for static barcoding at t1. We found that the former constraint 
gives robust results over all tested datasets.

These two constraints are integrated as follows. With ζ⃗ ∈ {0, 1}M indicating a 
clonal barcode combination, and Iζ

t  indicating the set of cell states at time t with 
barcode combination ζ⃗ , the total number of cells with the barcode structure ζ⃗  at 
time t is Nζ

t ≡ |Iζ
t |. We enforce the constraint:

Nζ
t1 = Nt1

Nζ
t2

N∗

t2
,

where N∗

t2 is the number of clonally labeled cells at t2. As Nζ
t1 is generally a 

non-integer, we sample the cell number probabilistically from 
{⌊

Nζ
t1

⌋

,
⌈

Nζ
t1

⌉}

, 

with a mean of Nζ
t1, where ⌊·⌋ and ⌈⋅⌉ take the floor and ceiling of a number, 

respectively.
We provide a heuristic implementation for this optimization. First, rank all 

observed barcode structures ζ⃗  from small to large values of Nζ
t1. Then, sequentially 

infer the initial structure of each clone ζ⃗ :

 1. compute from T the fate probability P
I

ζ
t2
(i) that each state i in t1 transitions 

to Iζ
t2, as defined below by Eq. (1);

 2. select among not yet clonally labeled cell states at t1 the top Nξ
t1 most likely 

initial cell states as the hypothetical initial states for this clone and update the 
clonal matrix Î(t1) accordingly.

Parameter choices. The joint inference accepts additional parameters for initializing 
T (kOT and ϵOT  for the OT method and gene selection parameter HighVar_
gene_pctl for the HighVar method). We set kOT = 5, ϵOT = 0.02. The remaining 
parameters are provided for each dataset below.

Toolkit for transition map analysis. Fate map. From a transition map T, we 
can compute the probability for early states to enter a given set of states Ct2 (a 
fate cluster). This is a key output of CoSpar and will be used to generate other 
important outputs, including progenitor probabilities, fate boundary and fate 
coupling. We first row-normalize the transition map: T̃ij = Tij/

∑

k Tik. The fate 
probability for an initial cell state i is given by

PCt2
(i) =

∑

j∈Ct2

˜Tij . (1)

The fate probability satisfies PCt2
∈ [0, 1] .

Progenitor map. We compute the probability that a set of later states Ct2 originate 
from a given initial state by normalizing the fate probabilities PCt2

(i) toward the 
fate cluster Ct2:

P̃Ct2
(i) =

PCt2
(i)

∑

i PCt2
(i)

.

The progenitor probability satisfies P̃Ct2
∈ [0, 1] .

Progenitor bias. We compute the bias by which an early state contributes differently 
to two fate clusters. Given two progenitor maps P̃A and P̃B toward cluster A and 
B, we compute the bias as

Qi =
P̃A (i)

P̃A (i) + P̃B (i)
. (2)

The progenitor bias is within the range [0, 1]. We set state i to have a neutral 
bias Qi = 0.5, if it has a small contribution to both fates: P̃A (i) + P̃B (i) ≤ ν0P̃∗, 
where P̃∗ is the maximum progenitor probability across both fates—that is, 
P̃∗ = max

i,C∈(A,B)
P̃C (i). We set ν0 = 0.05 in this paper.

Predictive genes. We perform differential gene expression (DGE) analysis among 
cells with different progenitor biases. The biased population toward fate A or B is 
given by

A
∗
=

{

argiQi > νbias,A
}

,B∗
=

{

argiQi < νbias,B
}

,

where νbias,A and νbias,B are the corresponding thresholds. We perform DGE 
analysis between these two populations using the Wilcoxon rank-sum test with 
Benjamini–Hochberg correction. We rank the enriched genes (FDR < 0.05) 
according to the expression fold change between population A∗ and B∗.

Fate coupling (Supplementary Fig. 7d,f). We define fate coupling as the  
correlation of fate maps toward two fates. Specifically, we first compute the  
fate map PC toward selected fate clusters. PC is a Nt1 × n matrix where n is the 
number of selected fates, represented by cell sets C(1)

t2 , …, C(n)
t2 . The raw coupling 

is given by

Y = P+
C
PC .

Here, Yll' sums over ‘joint probability’ between fate cluster l and l′ across all 
initial states. We normalize the coupling as Ỹll′ = Yll′ /

√

Yl′ l′Yll,, which brings the 
self-coupling Ỹll to 1 and Ỹll′ ∈ [0, 1].

Clonal fate bias (Figs. 5d and 6b). We evaluate the fate bias of a clone toward/
against a given cluster as in ref. 15 by quantifying the statistical significance of a 
clone’s occupancy of a set of transcriptomic states (for example, a cluster), when 
compared to that expected from a random sampling of cells. The P value (or 
Pvalue) is computed with Fisher’s exact test, accounting for the clone size. We then 
transform it into clonal fate bias − log10 Pvalue and rank each clone accordingly. We 
also provide the same rank plot for randomly sampled clones.

Analyzing simulated datasets. Linear differentiation (Fig. 3a–d and 
Supplementary Fig. 5d–f). A cell trajectory was parameterized as a 
one-dimensional interval of length L. The dynamics were simulated with a 
homogenous transition map corresponding to a biased random walk. Here, 
Tx1 ,x2 = N (x2 − x1;1, σ) ,whereN (·;1, σ) is the Gaussian distribution  
with mean 1 and standard deviation σ. Specifically, clones were simulated  
from this map by sampling x1~Uniform(0, L) and then x2 = x1 + 1 + ξ with 
ξ~ Gaussian(0, σ). Each pair (x1, x2) defines a clone. A total of N clones were 
simulated. To simulate barcode homoplasy, clones were randomly mixed to  
give M < N clonal barcodes of uniform size. All observations of cell states were 
embedded in a 50-dimensional space Z = (z1, …, z50) by setting z1 = x and  
adding independent Gaussian noise zk = 0.2ξ to each of the remaining 49 
dimensions. We used σ = 0.5, L = 100 and N = 1,000. The number of detected 
clonal barcodes M was variable, as shown in the figure panels. CoSpar was applied 
with νcs = 0.2 and n⃗df  = [5, 5, 5].

Bifurcation and cell sampling (Fig. 3e–i). A cell trajectory was parameterized as 
a one-dimensional interval of length L/2 bifurcating into two one-dimensional 
intervals of further length L/2 corresponding to fates A and B. To simulate  
a clonal resampling experiment, for each clone an initial barcoded cell was  
seeded at x0~Uniform(0, L) at t = 0. Cells were simulated to divide once at  
each unit time step, and all cells progressed along the trajectory according to  
a random walk, with Tx1 ,x2 (t1, t2) = N (x2 − x1;t2 − t1, σ

√
t2 − t1). As each  

cell transitions past the bifurcation point (L/2), it chose between fates A and  
B with probability 1/2. At t = t1, we sampled cell states in each clone with a  
success rate of 0.5 per cell. Successfully sampled cells were removed, and the 
remaining unobserved cells continued to divide and progress as described.  
The state of all remaining cells was profiled at t2 = t1 + 1. The observed cell states 
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were embedded in a 50-dimensional observation space Z by first embedding in  
two dimensions,

(z1, z2) =















(x, 0) , if x < L/2
( x
2 , x

2
)

, if x ≥ L/2, fate = A
( x
2 ,− x

2
)

, if x ≥ L/2, fate = B

and then adding independent Gaussian noise zk = 0.2ξ to each of the remaining 
48 dimensions. We set σ = 1, t1 = 5 and L = 10. M = 100 clones were simulated. 
CoSpar was applied with νcs = 0.2 and ⃗ndf  = [10,10,10].

Evaluating CoSpar with simulated data. We defined the TPR (Fig. 3d,g) as the 
fraction of rows of the inferred transition map, Tx1 ,x2, for which the maximum 
transition rate is within 3σ of the expected peak position—that is, TPR = 
E[H(3σ−|argmaxΔx − Tx1 ,x1+Δx−1|)] where E(·) is the mean over all rows of T, and 
H(z) = {1 for z > 0; 0 otherwise}. The progenitor bias for the bifurcation model 
(Fig. 3h,i) was calculated according to Eq. (2). Each of the TPR and progenitor 
bias comparisons (Fig. 3d,g,i) shows averages after application of CoSpar to five 
independent simulations.

Benchmarking and applying CoSpar to hematopoiesis. Pre-processing. Data12 
are available at the Gene Expression Omnibus (GEO) under accession number 
GSE140802. Data were pre-processed as originally described12: (1) unique 
molecular identifier (UMI) counts were normalized in each cell to the average 
across all cells; (2) highly variable genes were selected using the SPRING gene 
filtering function (filter_genes using parameters min_vscore_pctl = 85, min_
counts = 3 and min_cells = 3)52; and (3) genes correlated with cell cycle were 
excluded from the highly variable gene list (genes with correlation C > 0.1 to the 
signature genes defined by Ube2c, Hmgb2, Hmgn2, Tuba1b, Ccnb1, Tubb5, Top2a 
and Tubb4b). The two-dimensional embedding and state annotation of cells were 
as in ref. 12, also available at the GEO website (GSE140802). We selected the top 40 
principal components (PCs). Unless otherwise stated, we constructed a kNN graph 
with k = 20 for downstream analysis.

Applying CoSpar. Code detailing implementation of CoSpar to the data is provided 
at https://cospar.readthedocs.io/. In brief, we evaluated the progenitor fate bias, 
identified putative driver genes and computed the fate coupling as described 
above. The default parameters are νcs = 0.1, n⃗df = [20, 15, 10], and we initialize the 
transition map using the OT method for joint inference.

Intra-clone dispersion (Fig. 4b). We quantified the intra-clone dispersion of a clone 
m as the maximum cell–cell distance d(m,t) within a clone at time t(t = 2,4,6), 
where the distance was measured by the shortest path distance in the kNN graph at 
k = 5. Figure 4b shows the dispersion normalized by the mean dispersion on day 2.

Transition map using the method from Weinreb et al.12 (Fig. 4c,h and Supplementary 
Fig. 7a,b,g–i). We selected clones that have a unique fate at a later time point, where 
each mature fate cluster was defined as in Weinreb et al. (see annotations in Fig. 4a). 
Multi-fate clones were discarded. Given this clone matrix Iw(t), with t = 2,4,6, we 
computed the transition map as Tw

in(t1, t2) = [Iwt1 ]
+Iwt2, where any initial cell state 

has the same probability to transition to any later cell state observed in the same 
clone. The ground truth progenitor bias in Fig. 4c shows the progenitor bias Qi on 
day 2 and day 4 computed from Tw

in (2, 4) , Tw
in (2, 6) and Tw

in (4, 6) using Eq. (2).

Fate map reconstruction error (Supplementary Fig. 7a,b). To allow comparison 
between methods, we used π(4, 6) from CoSpar with νcs = 0.2 or Tw

in(4, 6) from 
the Weinreb et al. method, constructed from subsampled clones on days 4–6, to 
compute the fate map PC(i, t = 4) toward cells annotated with a given fate (cell 
set C) according to Eq. (1). We evaluated the inferred maps by comparing them 
to a ground truth fate map Ptrue

C
(i, t = 2) from the Weinreb et al. method with all 

clones from days 2–4. We evaluated the prediction using the Wasserstein distance53 
between the two distribution PC and Ptrue

C
, restricted to the progenitor state space 

C̄  (that is, excluding states belonging to fate C). Note that PC(i, t = 4) maps 
the fate probability of cells sampled on day 4, whereas Ptrue

C
(i, t = 2) is for cells 

sampled on day 2. To compare the fate maps for these non-overlapping cell subsets, 
we computed the OT map TOT from day-2 states to day-4 states with kOT = 5 and 
ϵOT = 0.02, using the shortest path distance. The Wasserstein distance is given by 
dwass =

∑

i,j∈C̄
PC (i) TOT

ij Ptrue
C

(j). We computed the Wasserstein distance for three 
major fates—neutrophils, monocytes and basophils—and reported the average.

WOT (Supplementary Figs. 7f and 10e). Results shown were obtained using the 
WOT package (https://github.com/broadinstitute/wot)9, using default parameters: 
ϵOT = 0.05, λ1 = 1 and λ2 = 50. We used a uniform growth rate for each cell.

Neuron network prediction (Supplementary Fig. 8). This section deals with 
comparison of CoSpar’s performance to that of an alternative algorithm, SuperOT. 
SuperOT trains a neural network to predict the most likely fate of a progenitor 
cell at some later time point. To do so, it trains on clones represented by two time 

points and can be tested using clones not included in the training set. To compare 
CoSpar performance to SuperOT, we generated comparable predictions from 
CoSpar. To this end, we first applied CoSpar to infer a Transition Map T(t1, t2) and 
then coarse-grained the transition map into a Fate Map PCt2

 (see above). We then 
defined the predicted fate choice of each cell as its most likely fate according in the 
Fate Map: fatei = argmax

Ct2

PCt2
(i). Then, we used this labeled dataset to train the 

neuron network MPLClassifier to predict fate choices of observed clones in a test 
dataset. We ran sklearn.neural_network.MLPClassifier with the following modified 
parameters to train the model: random_state = 1, max_iter = 300 and alpha = 0.1. 
For both CoSpar and SuperOT, the resulting fate predictions for the majority fate 
per clone were correlated with that observed in the test dataset.

Benchmarking and applying CoSpar to fibroblast reprogramming. 
Pre-processing. Data were downloaded from the GEO, accession number 
GSE99915. We followed the same processing as described above for hematopoiesis 
and removed cell-cycle-correlated genes with correlation score |C| > 0.03. We used 
UMAP (scanpy.tl.umap with min_dist = 0.3) to generate the embedding.

In this dataset, cells were barcoded at three time points (days 0, 3 and 13). 
Following Biddy et al.15, we concatenated day-0 and day-3 barcodes to form a unique 
clonal ID for downstream analysis. However, keeping three barcodes per cell, thus 
allowing nested clonal structure, works equally well (Supplementary Fig. 10f–h). 
We also inherited their annotation for the reprogrammed cluster (obtained by 
email communication with the authors) and used their selected clones to define the 
ground truth for reprogramming and failed trajectories. The failed cluster (Fig. 5a) 
was defined as a Leiden cluster (scanpy.tl.leiden with resolution = 1.5) in the cells 
sampled at day 28, which highly expresses Col1a2 (Supplementary Fig. 10a), a gene 
expressed in fibroblasts that failed reprogramming15. The reprogrammed and failed 
clusters were used to define the progenitor bias in this dataset.

Applying CoSpar. The default parameters are νcs = 0.2, n⃗df = [15, 10, 5], and we 
initialize the transition map using the OT method for joint inference. See the 
Jupyter Notebook implementation at https://cospar.readthedocs.io/.

Selecting dispersed clones (Fig. 5d,e). We first calculated for each clone the 
fraction γo of cells within the reprogrammed cluster. Dispersed clones are defined 
as occupying both the reprogrammed cluster and other cell states on day 28, 
thus having intermediate values of γo. We selected dispersed clones satisfying 
R− ≤ γo < R+, where R− = x and R+ = 0.4 − 2x, and x parameterizes the 
selection window. This parameterization was chosen so that we could evenly 
exclude clones at both sides of the window when adjusting x. The fraction  
of clones within this window was used as an indicator for each subsampled  
dataset in Fig. 5e.

Transitions using the method from Biddy et al. (Fig. 5e,f). Following Biddy et al.15, 
we first identified clones that are enriched or depleted in the reprogrammed cluster 
according to Fisher’s exact test. Among statistically significant clones (Pvalue ≤ 0.05), 
we selected cell states belonging to reprogramming clones (γo > 0.4) as putative 
reprogramming population Dr and classified cell states of low-reprogramming 
clones (γo < 0.4) as putative failed population Df .

To boost the performance for downstream analysis, we made the following 
modification to the original method in Biddy et al.15. For a putative population (Dr 
or Df ), we enriched for high-fidelity states by iteratively excluding clones with γo 
closest to 0.4 until the total number of cells in Dr or Df  was at or below 3,000.

Calculating marker gene TPR (Fig. 5e,f and Supplementary Fig. 10b). For a putative 
reprogramming (Dr) and failed (Df ) population predicted by either CoSpar or 
the Biddy et al. method, we assessed their accuracy by the overlap of their top 
DEGs with those from the reference population (defined by the fate-biased clones 
selected by Biddy et al.15).

To predict population Dr and Df  with CoSpar, we inferred T with νcs = 
0.4 and threshold the fate map PC built from the intra-clone transition map 
π = P (θ (T, 0)) as follows:

Dx =
{

argiPCx (i) > νt max PCx

}

, x ∈ {r, f}

where, to enrich for high-fidelity states, νt = max(0.5, ω), and ω was chosen such 
that |Dx| is the largest value below 500.

For both CoSpar and the Biddy et al. prediction, when |Dx| ≤ 200, we 
increased the total cell number up to 200 by adding the nearest neighbors of 
selected cell states using the kNN graph defined by the full dataset. This step 
supports the statistical power of the DGE analysis.

Finally, we performed DGE analysis between Dr and Df , identified enriched 
genes for each population and compared them with the reference. Specifically, we 
first calculated the P value for each gene using the Wilcoxon rank-sum test with 
Benjamini–Hochberg correction. We ranked them according to the expression fold 
change between Dr and Df , kept the top 50 genes enriched in Dr and another top 
50 in Df  and excluded statistically insignificant ones (adjusted P ≥ 0.05). Denoting 
the resulting gene set for predicted population Dx as Ex, and that from the 
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corresponding reference population as E true
x , the marker gene TPR for this putative 

population is given by

TPRx =
|Ex ∩ E true

x |

max {|Ex| , |E true
x |}

, x ∈ {r, f}

The final marker gene TPR for a given method (CoSpar or the Biddy et al. 
method) was (TPRr + TPRf) / 2.

Application of CoSpar to in vitro differentiation of lung endoderm. Pre-processing. 
Data were downloaded from the GEO, accession numbers GSE137805 and 
GSE137811. We selected highly variable genes using the filter_genes function 
(min_vscore_pctl = 80, min_counts = 3 and min_cells = 3) and normalized the 
UMI counts per cell to 10,000. We used the top 40 PCs to construct a kNN graph 
with k = 20 for downstream analysis. We inherited the original embedding on days 
17 and 21 by Hurley et al.22 (available at https://kleintools.hms.harvard.edu/tools/
springViewer_1_6_dev.html?cgi-bin/client_datasets/nacho_springplot/allMerged) 
and used UMAP (scanpy.tl.umap with min_dist = 0.3) to generate the embedding 
for day-15 and day-27 cells. The iAEC2 cluster is defined as the day-27 Leiden 
cluster (scanpy.tl.leiden with resolution = 0.5) that highly express SFTPB and SFTPC 
(Supplementary Fig. 11a), marker genes for iAEC2 cells22.

Applying CoSpar. To apply joint inference (Fig. 6c and Supplementary Fig. 11f,g), 
we initialized the transition map using the HighVar method with HighVar_gene_
pctl = 80 and ran CoSpar with νcs = 0.2, n⃗df = [20, 15, 10]. See Jupyter Notebook 
implementation at https://cospar.readthedocs.io/.

Directed differentiation of iPSCs into lung epithelium. We performed directed 
differentiation of BU3 NGST human iPSCs into NKX2.1+ lung epithelial cells as 
previously described22,32. The BU3 NGST line carries GFP and tdTomato reporters 
targeted to the endogenous lung epithelial selective NKX2-1 and SFTPC loci32. 
On day 15 of differentiation, NKX2-1GFP+ cells were sorted and resuspended in 
undiluted growth factor-reduced Matrigel (Corning) at a dilution of 500 cells per 
microliter. Cells were fed every other day with previously described CK + DCI 
media22,32 supplemented with 10 µm of Y-27632 (Rock Inhibitor) (CK + DCI + 
RI). On days 17–19, this media was supplemented with 0, 5 or 50 ng ml−1 of rhLIF 
(R&D Systems). On day 29, Z-stack images of live organoids were taken and 
processed on a Keyence BZ-X710 fluorescence microscope. Z-stacks were used 
to generate full-focus projections using BZ-X Analyzer software (version 1.3.1.1), 
followed by background subtraction and intensity correction. Cells were then 
collected and digested into a single-cell suspension as previously described22 and 
analyzed by flow cytometry to assess the yield of cells delineated by the fluorescent 
reporters and DRAQ7 (live/dead stain).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data analyzed in this article are publicly available through online sources.
The annotated data, results and Python implementation are available at https://
cospar.readthedocs.io/. The raw data for the hematopoiesis dataset can be accessed 
at the Gene Expression Omnibus database with accession number GSE140802, the 
reprogramming dataset with accession number GSE99915 and the lung dataset 
with accession numbers GSE137805 and GSE137811.

Code availability
The results reported in this paper and our Python implementation are available at 
https://cospar.readthedocs.io/.
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