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Energy flows in biomolecular motors and machines are vital to their function. Yet experimental
observations are often limited to a small subset of variables that participate in energy transport and
dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy
production is measurable through the violation spectrum of the fluctuation-response relation of a slow
observable. For general Markov systems with time scale separation, we prove that the violation spectrum
exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the
plateau can account for energy dissipation over a broad time scale. Our findings suggest a general
possibility to probe hidden entropy production in nanosystems without direct observation of fast variables.
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Introduction.—Recent advances in technology have
made it possible to investigate energetic aspects of an
open nanosystem experimentally. Studies have been carried
out to quantify, e.g., the energy conversion efficiency of
molecular motors [1,2], the information-energy conversion
efficiency of an artificial Maxwell demon [3–6], the
entropy production of a quantum tunneling device in a
temperature gradient [7], and the effective temperature of
single molecules in nonequilibrium steady states [8].
In the most interesting cases, such small systems are

capable of complex dynamic behavior by virtue of multiple
degrees of freedom over a broad range of time scales, and
furthermore by operating out of equilibrium. The functional
features of these systems are usually associated with slow
processes, but recent theoretical studies have provided
several examples of “hidden entropy production” arising
from nonequilibrium coupling between fast and slow
variables [9–19]. A better understanding of the conditions
and key characteristics of this phenomenon is desirable not
only from a theoretical viewpoint, but also for developing
experimental protocols to uncover channels of energy
dissipation without a full characterization of the possibly
great many fast processes in a complex nanosystem.
In this Letter, we show that it is indeed possible to trace

the hidden entropy production by quantifying the violation
spectrum of the fluctuation-response relation (FRR) of a
slow observable. In equilibrium systems, the FRR states
that the spontaneous fluctuation of an observable decays
in the same way as the deviation produced by an external
perturbation. For a velocity observable _x which is of
particular interest here, the former can be measured via
the autocorrelation function C_xðtÞ≡ h½_xðtÞ − h_xis�½_xð0Þ −
h_xis�is in the stationary ensemble h·is, while the latter is

captured by the dynamic response R_xðtÞ≡ δh_xðtÞi=δh,
with h being the perturbing field [20]. In frequency,
~C_xðωÞ ¼ 2T ~R0

_xðωÞ, where T is the temperature of the bath
and the prime on ~R_x denotes its real part. However, the two
properties are not simply related for nonequilibirum sys-
tems [21–24]. One significant result achieved in this
direction is an equality derived by Harada and Sasa
(HS) in Langevin systems. The equality connects the
steady-state dissipation rate through the frictional motion
of x, denoted as Jx, to the integral of the frequency-resolved
FRR violation [25,26],

Jx ¼ γ

�
h_xi2s þ

Z
∞

−∞

dω
2π

½ ~C_xðωÞ − 2T ~R0
_xðωÞ�

�
; ð1Þ

where γ is the friction coefficient. This equality has been
validated experimentally in a driven colloidal system [27],
and applied to F1-ATPase, a biomolecular motor, to infer
the dissipation rate of the rotary motion [2,28].
The known applications of the HS equality are for

systems that dissipate energy on a slow time scale. Here
we show that the HS equality can also be used to probe
hidden entropy production that takes place on time scales
faster than the relaxation time of the observed variable.
We first demonstrate, in a solvable Langevin model, the use
of Eq. (1) to fully account for the dissipated energy in a
nonequilibrium steady state. Interestingly, the FRR viola-
tion becomes vanishingly small for large time scale
separation, while its integral with respect to frequency
remains finite. We present a proof that this feature of the
FRR violation spectrum, arising from the dissipative
coupling between slow and fast variables, is generic for
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a time scale separated Markov system. Based on these
findings, we suggest an experimental method to detect
hidden entropy production from the fluctuation-response
spectrum of a slow variable.
Potential switching model.—Consider the one-

dimensional, over-damped motion of a bead subjected to
a potential that switches stochastically between U0ðxÞ and
U1ðxÞ at a rate r. Figure 1(a) illustrates an experimental
realization using a laser trap that produces a harmonic
potential U0ðxÞ ¼ kx2=2 whose center position switches
back and forth between x ¼ 0 and L [therefore U1ðxÞ ¼
kðx − LÞ2=2] [8,27]. This can also be viewed as a minimum
Langevin model to study molecular machines which have
fast binding or unbinding of currency molecules that
triggers transition between different chemical states.
With the potential state σt ð¼ 0; 1Þ at time t, and under
a perturbing force h, the Langevin equation for the bead
position x takes the form

γ _x ¼ −∂xUσtðxÞ þ hðtÞ þ ηðtÞ: ð2Þ

Here γ is the friction coefficient and ηðtÞ is the thermal
noise satisfying hηðtÞi ¼ 0 and hηðtÞηðt0Þi ¼ 2γTδðt − t0Þ,
with T the temperature of the bath. The Boltzmann constant
kB is set to 1.
The model defined above has two time scales, τs ¼ γ=k

for relaxation within a given potential and τf ¼ 1=r for

potential switching. We introduce ϵ≡ τf=τs to characterize
the time scale separation between the two competing
processes. In the fast switching limit ϵ → 0, it is straight-
forward to show that the steady-state distribution of the
bead position takes the Boltzmann form PsðxÞ ∼
exp½−UeðxÞ=T�, where Ue ¼ ½U0ðxÞ þ U1ðxÞ�=2 is the
effective potential seen by the bead. Nevertheless, due to
potential switching, energy is continuously injected into the
system at an average rate

_W ¼
Z

∞

−∞
r½Ps

0ðxÞ − Ps
1ðxÞ�½U1ðxÞ − U0ðxÞ�dx;

where Ps
σðxÞ is the stationary distribution in the full state

space (x, σ). By analyzing the Fokker-Planck equation in
the steady state satisfied by Ps

σðxÞ, we obtain

_W →
ϵ→0 1

4γ
hf∂x½U1ðxÞ −U0ðxÞ�g2is ð3Þ

where h·is denotes the average over the reduced distribution
PsðxÞ. In the case of a harmonic potential, Eq. (3) yields
_W ¼ k2L2=ð2ϵγ þ 4γÞ. As shown in Fig. 1(b), the energy
injection rate is always positive and approaches a constant
in the limit ϵ → 0.
We now examine dissipation of the injected energy

through viscous relaxation of the bead position x, which
is our slow variable. To use Eq. (1) to compute the associated
entropy production, we need to work out the velocity
correlation spectrum ~C_xðωÞ and the response spectrum
~R0
_xðωÞ. It turns out that, in the harmonic case, Eq. (2) takes

a linear form and can be solved analytically. Here,
∂xUσtðxÞ ¼ ∂xUeðxÞ − ξðtÞ is decomposed into an effective
force ∂xUeðxÞ ¼ kðx − L=2Þ and a “switching noise”
ξðtÞ ¼ kLðσt − 1=2Þ, with hξðtÞi ¼ 0 and hξðtÞξðt0Þi ¼
ðkL=2Þ2 expð−2rjt − t0jÞ. As shown in Fig. 1(c), ~R0

_xðωÞ ¼
γω2=ðk2 þ γ2ω2Þ is independent of ϵ. The correlation
spectrum ~C_xðωÞ, on the other hand, contains a term
2T ~R0

_xðωÞ from the thermal noise ηðtÞ, and the remaining
part from the switching noise ξðtÞ. The latter is precisely the
FRR violation spectrum shown in Fig. 1(d):

~C_xðωÞ − 2T ~R0
_xðωÞ ¼ ϵ

kðL=2Þ2
1þ ðωτf=2Þ2

~R0
_xðωÞ: ð4Þ

Carrying out the integral over ω in Eq. (1), we obtain
Jx ¼ _W. Therefore, the FRR violation spectrum of the slow
variable _x allows full recovery of entropy production in the
present case.
A remarkable feature of the FRR violation spectrum

displayed in Fig. 1(d), which is also evident from Eq. (4), is
the plateau behavior in the intermediate frequency range
τ−1s ≪ ω ≪ τ−1f . This is the time or frequency window over
which the fluctuating dynamics of x deviates most from

FIG. 1. (a) The potential switching model with a fast switching
time constant τf ¼ 1=r and a slow relaxation time constant
τs ¼ γ=k. The effective potential UeðxÞ in the fast switching limit
ϵ ≪ 1 is shown. (b) Rate of energy input against ϵ. (c) Frequency
spectra of the velocity correlation and response functions at
various values of ϵ. (d) Frequency spectra of the FRR violation
whose integral yields the hidden entropy production that balances
energy input in (b). Parameters: k ¼ γ ¼ 1 and L ¼ 5. Open
circles and stars in (c) and (d) give results from a simulated
trajectory of length Tsp ¼ 104τs and sampling rate 2τ−1f . The
response function is reconstructed from data using a perturbation
strength h ¼ 0.5. (See Supplemental Material [29].)
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equilibrium, and also where the hidden entropy production
takes place in the model. As ϵ approaches zero, the height
of the plateau diminishes, leaving the apparent impression
that the FRR is restored. Nevertheless, the integral in
Eq. (1) remains finite so as to be consistent with the
energy input shown in Fig. 1(b). Our explicit solution of the
potential switching model thus exposes subtleties surround-
ing the limit ϵ → 0.
The above example demonstrates that, with the help of

the HS equality, at least part of the hidden entropy
production can be recovered through precise measurement
of the FRR violation spectrum of a slow variable. To gain
an impression on the feasibility of this proposal, we have
explicitly reconstructed the velocity correlation and
response spectrum from a simulated stochastic trajectory
xðtÞ of the potential switching model at ϵ ¼ 0.01. The
length of the trajectory is taken to be Tsp ¼ 104τs, with a
sampling rate of 2τ−1f . This is sufficient to reveal the
full range of the plateau as indicated by open circles in
Fig. 1(d). As we show in the Supplemental Material [29],
the relative fluctuation of ~CðωÞ goes generally as
ðTsp=τsÞ−1=2. Therefore, to reach a precision of order ϵ,
the length of the time series should be of the order of τs=ϵ2.
Lowering temporal resolution in the measurement will lose
information on the high frequency end of the spectrum.
Nevertheless, even a sampling rate of 0.1τ−1f can provide
good evidence of nonequilibrium fluctuations in x gen-
erated by the hidden fast processes.
Below we show that the plateau behavior is a general

feature of nonequilibrium Markov systems with time scale
separation. Since a Langevin model can be considered as a
special case of the Markov process, the aforementioned
results can be extended to general potential switching
models with a nonlinear force field and position-dependent
switching rates, including the well-studied F1-ATPase.
This constitutes the main result.
General Markov processes.—Consider a general con-

nected Markov system with N states. Transition from state
m to state n (1 ≤ n, m ≤ N) takes place at rate wn

m. The
probability PnðtÞ to be at state n after time t follows the
master equation

d
dt

PnðtÞ ¼
X
m

MnmPmðtÞ; ð5Þ

where Mnm ¼ wn
m − δnm

P
kw

k
n and δnm is the Kronecker

delta. The right and left eigenmodes, denoted as xj and
yj respectively, satisfy

P
mMnmxjðmÞ ¼ −λjxjðnÞ andP

nyjðnÞMnm ¼ −λjyjðmÞ, where the minus sign is intro-
duced so that ReðλjÞ ≥ 0. We rank λj in an ascending order
by its real part, i.e., Reðλ1Þ ≤ Reðλ2Þ ≤ � � �. The first
eigenvalue λ1 ¼ 0, with x1ðnÞ ¼ Ps

n being the steady-
state distribution and y1ðnÞ ¼ 1. Generically, the normal-
ized eigenmodes satisfy the orthogonality relation

P
nxjðnÞyj0 ðnÞ ¼ δjj0 and the completeness relationP
jxjðnÞyjðn0Þ ¼ δnn0 .
We now introduce an external perturbation of strength h

whose effect on the dynamics is specified by the modified
transition rates ~wn

m ¼ wn
m exp½ðQn −QmÞh=2T�, where Qn

is a state variable conjugate to h [32,33]. Along a stochastic
trajectory nt, QðtÞ≡Qnt . In analogy with the velocity
variable for the Langevin dynamics (2), we consider the
time derivative _QðtÞ whose correlation and dynamic
response are defined as C _Qðt − τÞ≡ h½ _QðtÞ − h _Qis�½ _QðτÞ −
h _Qis�is and R _Qðt − τÞ≡ δh _QðtÞi=δhτ, respectively. By
following the time evolution of the state probabilities
PnðtÞ under the eigenmode expansion, we have obtained
general expressions for C _Q and R _Q which take the following
form in frequency:

~C _QðωÞ ¼
XN
j¼2

2αjβjλj

�
1 −

1

1þ ðω=λjÞ2
�
; ð6aÞ

~R _QðωÞ ¼
XN
j¼2

αjϕj

�
1 −

1 − iðω=λjÞ
1þ ðω=λjÞ2

�
; ð6bÞ

where i is the imaginary unit.
The coefficients in Eqs. (6) are weighted averages

of Q, i.e., αj ≡P
nQnxjðnÞ, βj ≡P

nQnyjðnÞPs
n,

and ϕj ≡P
nBnyjðnÞ, with Bn ≡P

m½wn
mPs

m þ wm
n Ps

n�
ðQn −QmÞ=2T. They satisfy the general sum rule [34]

XN
j¼2

αjðλjβj − TϕjÞ ¼ 0: ð7Þ

The detailed balance condition wm
n P

eq
n ¼ wn

mP
eq
m implies

λjβ
eq
j ¼ Tϕeq

j for all j, and hence the FRR ~C _QðωÞ ¼
2T ~R0

_QðωÞ. More generally, in the limit ω → ∞, ~C _Qð∞Þ ¼
2T ~R0

_Qð∞Þ ¼ const by virtue of the sum rule, confirming
the behavior seen in Fig. 1(c) on the high frequency side.
We now apply the general results to a time scale

separated system whose states can be partitioned into K
subgroups or coarse-grained states, denoted as p or q. Each
state n (m) is alternatively labeled by pk (ql), with k (l) for a
microscopic state within p (q). Within a coarse-grained
state, transitions are fast (time scale ∼τf), whereas tran-
sitions across coarse-grained states are slow (time scale
∼τs), as illustrated in Fig. 2(a). Formally, this condition
amounts to the statement that the transition rate matrix is
split into two parts:

Mpkql ¼ ϵ−1δpqM
q
kl þMð1Þ

pkql ; ð8Þ

where ϵ−1Mq (ϵ≡ τf=τs) is the transition rate matrix within
a coarse-grained state q while Mð1Þ is for slow transitions
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between coarse-grained states [35]. Below we shall analyze
the eigenvalue and FRR spectra of the Markov process
Eq. (8) using perturbation theory.
In the absence of intergroup transitions, the matrix M is

block diagonalized. Within each block q, the rate matrix
ϵ−1Mq has a nondegenerate eigenvalue λq1 ¼ 0 and the
corresponding stationary distribution PsðljqÞ. All other
eigenvalues of the matrix are positive and scale as ϵ−1,
which together define the fast modes of the system.
Figure 2(c) illustrates the eigenvalue spectrum of the

block diagonalized matrix and its modification by Mð1Þ
when interblock transitions are introduced. Lifting of the
K-fold degeneracy at λ ¼ 0 can be analyzed using standard
perturbation theory. To the leading order in ϵ, the projected
transition rate matrix,

M̂pq ¼
X
k;l

Mð1Þ
pkqlP

sðljqÞ; ð9Þ

defines an emergent dynamics for the coarse-grained states.
Its eigenmodes x̂j and ŷj with eigenvalue λ̂j (∼1) account
for the leading order behavior of the slow modes ðj ≤ KÞ
in the full state space [34], which satisfy xjðpkÞ ¼
x̂jðpÞPsðkjpÞ þOðϵÞ, and yjðpkÞ ¼ ŷjðpÞ þOðϵÞ, and
λj ¼ λ̂j þOðϵÞ. We now focus on a slow observableQpk

¼
Qp that only depends on the coarse-grained state. Then, α̂j,
β̂j, and ϕ̂j are also defined for the slow modes ðj ≤ KÞ,
which turns out to be αj ¼ α̂j þOðϵÞ, βj ¼ β̂j þOðϵÞ, and
ϕj ¼ ϕ̂j þOðϵÞ. In terms of the parameters from the
coarse-grained dynamics, we may write

~C _Q − 2T ~R0
_Q ¼ 2

XK
j¼2

α̂j
Tϕ̂j − β̂jλ̂j

1þ ðω=λ̂jÞ2
þ ϵVsðωÞ: ð10Þ

An explicit form for VsðωÞ is given in the Supplemental
Material [29]. In the intermediate region (τ−1s ≪ ω ≪

τ−1f ∼ ϵ−1), VsðωÞ≃ 2ϵ−1ΣK
j¼2αjðβjλj − TϕjÞ→ϵ→0

const due

to the sum rule
P

K
j¼2 α̂jðβ̂jλ̂j−Tϕ̂jÞ¼0 under M̂. Besides,

VsðωÞ vanishes for both ω ≫ τ−1f and ω ≪ τ−1s .
Equation (10) is the generalized description of the

plateau behavior we found in the potential switching model
[see Eq. (4)]. The low frequency FRR violation spectrum
ðω ∼ τ−1s Þ comes from the coarse-grained dynamics, which
vanishes if the detailed balance condition is fulfilled under
M̂. In the intermediate frequency region, the nonequili-
brium coupling between the fast and slow variables
produces a plateau ϵVs whose height diminishes in the
time scale separation limit ϵ → 0.
Since the HS equality holds generally for system

variables that follow the Langevin dynamics, Eq. (10)
can be immediately used to obtain heat dissipation asso-
ciated with the frictional motion of these variables. On the
other hand, if the slow variable p takes on a discrete set of
values, then the situation is more complicated. Lippiello
et al. [36] considered a special class of discrete models
whose dynamics follows closely that of a Langevin system.
There it was shown for a one-dimensional system that,
when the allowed transition rates take the symmetric form
wn
m ¼ τ−1e½SðnÞ−SðmÞ�=2 with jSðnÞ − SðmÞj ≪ 1, the HS

equality holds approximately, and hence a link between
the FRR violation spectrum and the heat dissipation can
again be established. In the Supplemental Material [29], we
present an example with a ladder network structure. More
general discussion of the relation between the plateau
behavior and the hidden entropy production is left to future
work.
Concluding Remarks.—We have demonstrated in a fairly

general setting that, for driven systems with large time scale
separation, the fluctuation-response relation applied to a
slow variable is close to being satisfied below its relaxation
time. However, close examination should reveal a charac-
teristic plateau behavior in the FRR violation spectrum
in the intermediate frequency region. The Harada-Sasa
equality can then be invoked to compute the frictional
dissipation arising from nonequilibrium fluctuations using
data from precise measurements of the fluctuation-response
spectrum.
We believe that our findings can be applied to expose

hidden entropy production in molecular motors. Examples
include the F1-ATPase mutants [37,38], which are known
to be less efficient in converting chemical to mechanical
energy as compared to the wild type. The fast variable in
this case corresponds to the chemical states associated with
ATP binding and hydrolysis, while the relatively slow
variable is the rotational angle. Their chemomechanical
coupling is usually modeled by a potential switching model
where position-dependent ATP binding and hydrolysis
shifts the potential forward, thus generating a directed

FIG. 2. (a) Illustration of a general nonequilibrium Markov
process with a dissipative cycle formed by fast and slow
processes. (b) Effective system at large time scale separation
ϵ ≪ 1, where the circulating probability flux is hidden, along
with the associated entropy production. (c) Eigenvalue spectrum
of the master equation for a time scale separated system. Fast
modes are well separated in their decay rates λj from the slow
ones. The latter form a nearly degenerate band at the bottom that
defines the slow dynamics of the effective system.
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rotation [28]. Our work suggests that energy loss in
inefficient motors may be caused by fast switching of
the chemical states that produces nonequilibrium fluctua-
tions in the rotary motion. If so, at least part of the hidden
entropy production can be measured by observing the
rotary motion with a high speed camera, without monitor-
ing the chemical states. Suppose that the rotary motion has
a relaxation time around 0.1 s, and the time scale of ATP
binding or hydrolysis around 5 × 10−3 s, then a sampling
duration Tsp¼400 s and a temporal resolution 2.5×10−3 s,
which is attainable in state-of-the-art single molecule
experiments [39], would be enough to see the FRR
violation spectrum. The rate of ATP binding and ADP
release can be modified by varying the concentration of
these molecules, yielding further information on the nature
of nonequilibrium fluctuations and associated energy dis-
sipation in the system.
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