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COMPUTATION OF THE CORRELATION AND RESPONSE SPECTRA FROM DATA

To determine the velocity correlation spectrum, we do the following: (a) sample the unperturbed trajectory x(t) at
a temporal resolution δt for a duration Tsp (� τs); (b) compute the Discrete Fourier Transform (DFT) x̃(ω) of x(t),
from which the velocity correlation spectrum ω2|x̃(ω)|2 is constructed; (c) following the proposal in [1], perform local
average of the spectrum to suppress noise (known as data compression).

To determine the velocity response spectrum at selected frequencies {ωk} simultaneously, we do the following: (a)
sample the trajectory x(t) perturbed by a linear combination of periodic driving forces h =

∑
k hk exp(iωkt), at a

temporal resolution δt for a duration Tsp (� τs); (b) compute the DFT x̃(ω) of the perturbed trajectory x(t); (c) at

each ωk, calculate the response R̃x(ωk) = x̃(ωk)/hk, and thus the velocity response R̃ẋ(ωk) = −iωkR̃x(ωk).
Below we examine in some detail fluctuations of the spectra constructed through the above procedure when a single

long trajectory is used in computation. This will allow us to devise suitable averaging procedures to suppress noise
in the data without significantly hampering its information content.

Correlation spectrum

The discussion below follows main ideas of the power spectrum analysis presented in Ref. [1].

General considerations

For a general stochastic trajectory x(t) sampled at resolution δt and for duration Tsp = Nspδt, we introduce the
following DFT,

x̃(ωk) =

√
δt√
Nsp

Nsp∑
j=1

x(jδt) exp(−iωkjδt), (S1)

where ωk = 2πk/Tsp, k = 0, . . . , Nsp−1. As illustrated by the harmonic potential switching model below, each Fourier
amplitude x̃(ωk) is a random variable whose value, just like the trajectory x(t), changes from realization to realization.
Therefore the velocity spectral function

g(ω) = ω2|x̃(ω)|2, (S2)

obtained from a single trajectory is a strongly fluctuating quantity. To estimate the ensemble averaged spectrum

C̃ẋ(ω) = 〈g(ω)〉, (S3)
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one may invoke the smoothness of the function by averaging g(ωk) over nearby frequencies in a suitable window of
width ∆ω. Since the spacing between accessible frequencies is δω = 2π/Tsp, relative error of the window-averaged
g(ω) should decrease as (∆ω/δω)−1/2 = (Tsp∆ω/2π)−1/2. On the other hand, ∆ω should not be chosen too large to

cause significant information loss. For the latter, we may consider the Taylor expansion of C̃ẋ(ω) around a chosen ω̄,

C̃ẋ(ω) = C̃ẋ(ω̄) +
dC̃ẋ
dω

∣∣∣
ω̄

(ω − ω̄) +
1

2

d2C̃ẋ
dω2

∣∣∣
ω̄

(ω − ω̄)2 + . . .

Averaging the above expression over a frequency window of width ∆ω centered at ω̄ yields,

C̃ẋ(ω) ' C̃ẋ(ω̄) +
1

24

d2C̃ẋ
dω2

∣∣∣
ω̄

(∆ω)2.

Equating the two terms on the right-hand-side of the expression above, we obtain,

∆ωM =
√

24

∣∣∣∣∣ C̃ẋ(ω̄)

∂2
ω̄C̃ẋ(ω̄)

∣∣∣∣∣
1/2

. (S4)

This sets an upper bound on the window size for averaging. In the part of the spectrum where the curvature of C̃ẋ(ω)
is small, a large window is desirable so as to reduce statistical error in the original data.

Harmonic potential switching model

We now illustrate the above general ideas with an explicit example, the harmonic potential switching model. The
bead displacement x(t) from the mid-point L/2 satisfies the Langevin equation,

γẋ = −kx+ ξ(t) + η(t), (S5)

where ξ(t) and η(t) are switching and thermal noise, respectively. Integrating Eq. (S5) over the time interval δt, we
obtain,

x(t+ δt) = exp(−δt/τs)x(t) + γ−1

∫ t+δt

t

dt′ exp
( t− t′
τs

)
[ξ(t′) + η(t′)], (S6)

where τs = γ/k is the relaxation time constant of bead displacement.
With the help of Eq. (S6), and ignoring boundary terms at the beginning and end of the time series, we obtain the

following equation for the DFT x̃(ω) when the sampling time δt� τs, 2π/ω,

iγωx̃(ω) ' −kx̃(ω) + ξ̃(ω) + η̃(ω). (S7)

Here, ξ̃(ω) and η̃(ω) are the usual Fourier transforms of the active noise ξ(t) and thermal noise η(t), respectively,
independent of δt. Therefore the equation satisfied by x̃(ω) is nearly identical to its continuous counterpart, provided
the sampling time interval δt is much shorter than both τs and 2π/ω (i.e., the part of the spectrum with ω < 2π/δt).

Following Eq. (S7), the velocity correlation spectrum from a single trajectory is given by,

g(ω) = ω2|x̃(ω)|2 ' 1

k2

ω2

1 + (ωτs)2

[
|ξ̃(ω)|2 + 2Re

(
ξ̃(ω)η̃∗(ω)

)
+ |η̃(ω)|2

]
, (S8)

where ∗ denotes complex conjugate. Since the two noises are uncorrelated from each other, the cross term vanishes
upon ensemble average that yields the desired correlation spectrum C̃ẋ(ω).

The mean of ξ̃(ω) and η̃(ω) are zero while their variances are given by 〈|ξ(ω)|2〉 = εγk(L/2)2/[1 + (ωτf/2)2] and

〈|η(ω)|2〉 = 2γT , respectively. On the high frequency end of the spectrum, i.e., ω � τ−1
s , C̃ẋ(ω) varies only on the

scale of τ−1
f which is much greater than τ−1

s and even greater than δω = 2π/Tsp. Therefore ∆ω can be chosen to
be very large to reduce the noise in the bare correlation spectrum (S8). On the other hand, for frequencies that are
comparable or even smaller than τ−1

s , C̃ẋ(ω) varies appreciably so that the window size is limited by τ−1
s . This is the

main reason behind the noisy low frequency spectrum shown in Fig. 1(d) in the Main Text.
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Fluctuation of the response spectrum

Now, we consider applying a periodic driving force h0 exp(−iω0t) to the system. Similarly to Eq. (S7), the equation
at ω = ω0 satisfies,

iγω0x̃(ω0) ' −kx̃(ω0) + ξ̃(ω0) + η̃(ω0) +
√
Tsph0. (S9)

Here, the prefactor
√
Tsp appears due to the rescaling scheme in Eq. (S1). The velocity response spectrum calculated

for a single perturbed trajectory is given by,

f(ω0) ≡ −iω0
x̃(ω0)

h0

√
Tsp

= − iω0

iγω0 + k

(
1 +

ξ̃(ω0)

h0

√
Tsp

+
η̃(ω0)

h0

√
Tsp

)
, (S10)

which contains fluctuations. Its ensemble average converges to the correct result

〈f(ω0)〉 = R̃ẋ(ω0). (S11)

Its standard deviation is given by √
〈|f(ω0)− R̃ẋ(ω0)|2〉 =

1

h0

√
Tsp

C̃ẋ(ω0). (S12)

Equation (S12) suggests that fluctuations in the velocity response spectrum can be reduced by increasing h0, thus
the signal/noise ratio, and also by using a longer trajectory.

However, h0 must be small enough to ensure that we are measuring linear response. Besides, Tsp may also be
limited in experiments. In such a situation, one may consider to perform averaging over nearby frequencies to reduce
noise in the response spectrum (S10). For example, we may apply a perturbation with multiple frequencies inside a

window of width ∆ω, i.e., h0

∑nr/2−1
k=−nr/2

exp(i[ω0 + kδω]t), where δω � 2π/Tsp to avoid possible interference effects.

Here nr = ∆ω/δω is the number of frequencies considered. Averaging over the response at these frequencies will
further reduce the error (S12) by a factor 1/

√
nr.

Error bars on the reconstructed spectra

Fig. S1 shows error bars on the reconstructed spectra presented in Fig. 1 of the Main Text. They have been estimated
from variations in the data within each window used for averaging. For the parameters chosen, our procedure yields
very good results on the high frequency end, but less satisfactory results on the low frequency side close to ω ' τ−1

s .
Fluctuations in the latter case are mainly due to insufficient averaging when computing the correlation spectrum.
Although we have not attempted to optimize this part of the data analysis, it is conceivable that data smoothening
procedures apply to the autocorrelation function Cx(t) can lead to much improved results.

Data points in Fig. S2(a) show the numerically determined FRR violation spectrum from a trajectory 10 times
longer than the one used to obtain the data points in Fig. S1(b). Fig. S2(b) shows the data in the same time
window but with a much reduced sampling rate 0.1τ−1

f . The low frequency part of the violation spectrum is faithfully
reproduced.

VALIDITY OF THE HARADA-SASA EQUALITY IN MARKOV SYSTEMS

In this section, we show that the HS equality holds approximately for a discrete Markov jump system with a
ladder network. Our argument is a generalization of the work in [2], where the HS equality in a one-dimensional
discretized Langevin system was studied. The model we study here, which describes the chemical state dynamics
of the chemotaxis-related membrane chemoreceptor in E.coli [3], is illustrated in FIG. S3(a). The chemical state of
this receptor is a combination of the methylation level m (= 0, 1, 2, 3, 4), and the activity a (= 0, 1). α is a small
parameter that tunes the irreversibility of the methylation/demethylation dynamics, and we only consider the range
α ≤ exp(1). The transition from the active state a = 1 to the inactive state a = 0 at methylation level m is denoted
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FIG. S1: (a) The velocity correlation and response spectrum reconstructed from a simulated trajectory, the same data as those
presented in FIG.(1)(c) of the Main Text but with error bars. (b) The corresponding FRR violation spectrum, plotted with
error bars. Parameters: γ = k = 1, L = 5, τf = 0.01, Tsp = 104, δt = τf/2, and h0 = 0.5.

(a) (b)

FIG. S2: The FRR violation spectrum constructed by using a longer simulation time Tsp = 105τs for the potential switching
model. (a) and (b) correspond to the case with temporal resolution δt = τf/2 and δt = 10τf , respectively. Other parameters
are the same as FIG. S1.

as w1(m), while the reverse transition rate is denoted as w0(m). The rates satisfy

w0(m) =
1

τf
exp

(
−∆E(m)

2T

)
,

w1(m) =
1

τf
exp

(
∆E(m)

2T

)
,

where ∆E(m) = e0(m∗ −m). Here, we set e0 = 2, m∗ = 2, τf = 0.01 and r = 1 in the numerical study. Therefore,
dynamics of m is relative slow and the timescale separation index ε ≈ 0.01. For more details of this model, refer to
[4]. Here, we study the validity of the HS equality when applied to the slow variable m.

Suppose that a transition from state n to m occurs with a rate wmn . Then this jump produces entropy ∆Smn =



5

FIG. S3: (a) The sensory adaptation network for E.coli. (b) The comparison between actual dissipation of the methylation

dynamics, i.e., Jm, and that estimated from the HS equality, where we use γeff = limω→∞ 1/R̃ṁ(ω). (c) Similar as (b) except
that we use γeff = T/[r

√
α] here.

ln[wmn /w
n
m] in the surrounding media, and the average dissipation rate of this transition is given by

[P snw
m
n − P smwnm] ln

wmn
wnm

,

where [P snw
m
n − P smwnm] is the net flux for this type of transition. The average dissipation rate due to the change of

m, denoted as Jm, is obtained by summing over all dissipations that involves changes of m, which is given by

Jm =
∑
m

( [
P s1,m+1r − P s1,mαr

]
ln

1

α
+
[
P s0,m+1αr − P s0,mr

]
lnα

)
. (S13)

where P sa,m is the stationary distribution at state (a,m).
Now, we consider how to estimate this dissipation rate from the FRR violation spectrum. From the temporal

trajectory m(t), we can compute its velocity correlation spectrum C̃ṁ(ω) and response spectrum R̃ṁ(ω). Then, we
are supposed to estimate the dissipation rate by

γeff

(
〈ṁ〉+

∫ ∞
−∞

[
C̃ṁ(ω)− 2TR̃′ṁ(ω)

] dω
2π

)
. (S14)

The key component in this estimation is the effective friction coefficient γeff , which is in general missing for a Markov
process. Below, we provide two possible definitions, both of which are rooted in the generalization of friction coefficient
defined Langevin systems.

In the over-damped Langevin system, we know that the friction coefficient is the inverse of the velocity response
spectrum in the high frequency limit. Therefore, we may define this effective friction coefficient

γeff = lim
ω→∞

1/R̃ṁ(ω), (S15)
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which is directly measurable.
Alternatively, if we discretize a continuous over-damped Langevin system with spatial unit ∆x, its transition rates

take the form

T

γ∆x2
exp(∆S/2), (S16)

where ∆S is to be understood as the entropy produced in the medium in this single jump. The corresponding
backward jump produces medium entropy −∆S due to time-reversal asymmetry. This is consistent with the fact that
more probable transitions always tend to produce positive entropy in the medium, which is the microscopic origin
for the irreversibility of the second law. In the case of methylation dynamics in FIG. S3, we may identify ∆S as the
medium entropy produced by the transition with rate r, and rewrite the methylation/demethylation rates in the form
of Eq. (S16), i.e., r = T

γeff
exp(∆S/2) and αr = T

γeff
exp(−∆S/2), where the discretization unit is 1 here. Then, we

can identify the effective friction coefficient

γeff =
T

r
√
α
. (S17)

Using the estimator Eq. (S14) and effective friction coefficient defined in Eq. (S15), we obtain the approximate
dissipation rate through m dynamics under various α, and compare it with the exact dissipation rate Jm, as shown
in FIG. S3(b). It quantitatively captures the dependence of the dissipation rate on α in the range α ∈ [e−1, e1],
where |∆S| = | lnα| < 1. Around lnα ≈ 0, where the two dash lines intersect, the HS equality becomes almost exact.
Alternatively, we may use the effective friction coefficient definition in Eq. (S17), as shown in FIG. S3(c), which is
almost exact in the range α ∈ [e−1, e1]. Therefore, both of these two definitions are correct in the limit of small
entropy production per step, i.e., |∆S| = | lnα| � 1.

To understand why the HS estimate fails for large ∆S, below we identify the higher order correction of this
estimation. The HS equality is essentially to use the kinetic information to deduce the energetic information, or
irreversibility of the dynamics. From the kinetic side, the biased transition rate (w+ − w−), i.e., the difference
between forward and backward rate, provides the hope to extract the dissipation of this single jump, i.e., ln[w+/w−].
This is essentially reduced to the following approximation

w+ − w− =
T

γeff
exp(∆S/2)− T

γeff
exp(−∆S/2)

=
T

γeff

[
∆S +

1

24
(∆S)3 + o(∆S3)

]
=

T

γeff

[
ln[w+/w−] +

1

24
(∆S)3 + o(∆S3)

]
(S18)

Therefore, the HS equality is a leading order approximation, which becomes exact for Langevin dynamics. Since the
correction is in the third order of ∆S, the HS equality can still be reasonably good for many discrete Markov systems,
as we have demonstrated in this sensory adaptation network. We will discuss this more deeply in our coming paper.

DERIVATION OF EQUATION (10) IN THE MAIN TEXT

Now, we study a special type of observable Qpk = Qp that only depends on the coarse-grained state, and therefore
evolves on a slow timescale τs. We ask how its violation spectrum may reveal the information of the microscopic
dynamics that is hidden from our observation.

Intuitively, its dynamics seems to be equally well described in both the complete state space by matrix M and
the coarse-grained state space by M̂ . The projection coefficients for the original system is αj ≡

∑
pk
Qpxj(pk), βj ≡∑

pk
Qpyj(pk)P spk , and φj ≡

∑
pk
Bpkyj(pk), where Bpk ≡

∑
ql

[wpkql P
s
ql

+wqlpkP
s
pk

](Qp−Qq)/2T . On the other hand, in

the coarse-grained system, we may also introduce the projection coefficients α̂j ≡
∑
pQpx̂j(p), β̂j ≡

∑
pQpŷj(p)P̂

s
p ,

and φ̂j ≡
∑
p B̂pŷj(p), where B̂p ≡

∑
q[ŵ

p
q P̂

s
q + ŵqpP̂

s
p ](Qp − Qq)/2T . Here, ŵqp is the transition rate of the coarse-

grained dynamics, which is given by ŵqp ≡
∑
k,l w

ql
pk
P s(k|p). Note that p 6= q here. Besides, we define λj as∑

mMnmxm = −λjxn and
∑
m ymMmn = −λjyn, which affects the sign below.
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To connect the two levels of description, we use the following relations concerning eigenmodes (j ≤ K) at the two
levels,

xj(pk) = x̂j(p)P
s(k|p) +O(ε), (S19a)

yj(pk) = ŷj(p) +O(ε), (S19b)

with λj = λ̂j +O(ε). A special but important case of Eq. (S19) is

P spk = P̂ spP
s(k|p) +O(ε). (S20)

Applying these relations to the projection coefficients, we obtain the following results for the slow modes (j ≤ K)

αj = α̂j +O(ε), βj = β̂j +O(ε), φj = φ̂j +O(ε). (S21)

The sum rule of the effective system M̂ demands that

K∑
j=2

α̂j(β̂j λ̂j − T φ̂j) = 0. (S22)

For fast modes (j > K), perturbative analysis shows that

xj(pk) = δp,qx̄
q
j(k) +O(ε), (S23a)

yj(pk) = δp,q ȳ
q
j (k) +O(ε), (S23b)

with λj = ε−1λq + O(1). Here, x̄qj(k) and ȳqj (k) are non-stationary eigenmodes of the matrix ε−1Mq describing

transitions within the coarse-grained state q, with ε−1λq being the corresponding eigenvalue. These non-stationary
eigenmodes (λq 6= 0) satisfy ∑

k

x̄qj(k) = 0,
∑
k

ȳqj (k)P s(k|q) = 0, (S24)

which results from the orthogonal relations with the stationary eigenmodes (λq = 0). With these relations, we can
prove that the fast modes (j > K) satisfy

αj = O(ε), βj = O(ε), φj = O(1). (S25)

With the above preparation, we now derive Eq.(10) in the Main Text. First, we note that there is a big gap between
eigenvalues of the slow modes, which are of order τ−1

s ∼ 1, and those of the fast modes, which are of order τ−1
f ∼ ε−1.

Therefore, in the frequency region ω � τ−1
f , only the slow modes contribute to correlation and response spectrum

according to Eq.(6) in the Main Text, i.e.,

C̃Q̇(ω) =

K∑
j=2

2αjβjλj

[
1− 1

1 + (ω/λj)2

]
+ ε3O([ωτs]

2), (S26a)

R̃Q̇(ω) =

K∑
j=2

αjφj

[
1− 1− i(ω/λj)

1 + (ω/λj)2

]
+ ε3O([ωτs]

2), (S26b)

where the correction comes from the fast modes. According to Eq. (S25), this correction is of order ε(ωτf )2, or
equivalently, ε3(ωτs)

2. Then, the violation spectrum for ω � τ−1
f can be written as

C̃Q̇(ω)− 2TR̃′
Q̇

(ω) = 2

K∑
j=2

αj
Tφj − βjλj
1 + (ω/λj)2

+ 2

K∑
j=2

αj(βjλj − Tφj) + ε3O([ωτs]
2). (S27)

Second, we apply the relations Eq. (S21) to this violation spectrum, and obtain for ω � τ−1
f

C̃Q̇(ω)− 2TR̃′
Q̇

(ω) = 2

K∑
j=2

α̂j
T φ̂j − β̂j λ̂j
1 + (ω/λ̂j)2

+ εVs(ω), (S28)
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which is exactly Eq.(10) in the Main Text, with εVs(ω) a residual contribution defined by Eq. (S28). Vs(ω) vanishes
for ω � τ−1

f due to FRR in the high frequency limit. For ω � τ−1
f , we have

Vs(ω) =
2

ε

K∑
j=2

αj(βjλj − Tφj) +
2

ε

K∑
j=2

αj
Tφj − βjλj
1 + (ω/λj)2

− 2

ε

K∑
j=2

α̂j
T φ̂j − β̂j λ̂j
1 + (ω/λ̂j)2

+ ε2O([ωτs]
2). (S29)

The diverging contribution from the first term vanishes due to the approximate relations Eq. (S21) and the sum rule
Eq. (S22), and the other two diverging contributions from the second and the third term cancel each other due to
Eq. (S21). Therefore, Vs(ω) is a well-defined frequency-dependent function in the timescale separation limit ε → 0.
Below, we analyze its frequency dependence.

In the intermediate frequency region τ−1
s � ω � τ−1

f , both the second and the third term in Eq. (S29) vanish, and
we obtain

Vs(ω) =
2

ε

K∑
j=2

αj(βjλj − Tφj)
ε→0−−−→ const (S30)

due to Eq. (S21) and the sum rule Eq. (S22). For ω � λ2 ∼ τ−1
s , the third term in Eq. (S29) becomes

2ε−1
∑K
j=2 α̂j(T φ̂j − β̂j λ̂j), which vanishes due to the sum rule Eq. (S22). Besides, the second term becomes

2ε−1
∑K
j=2 αj(Tφj − βjλj) in this frequency region, which cancels the first term. Therefore, Vs(ω) = 0 for ω � τ−1

s .

To conclude, Vs(ω) vanishes both in the high (ω � τ−1
f ) and low (ω � τ−1

s ) frequency region, and it becomes a
plateau in the intermediate frequency region.
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