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Abstract

Statistical analysis of alignments of large numbers of protein sequences has revealed “sec-

tors” of collectively coevolving amino acids in several protein families. Here, we show that

selection acting on any functional property of a protein, represented by an additive trait, can

give rise to such a sector. As an illustration of a selected trait, we consider the elastic energy

of an important conformational change within an elastic network model, and we show that

selection acting on this energy leads to correlations among residues. For this concrete exam-

ple and more generally, we demonstrate that the main signature of functional sectors lies in

the small-eigenvalue modes of the covariance matrix of the selected sequences. However,

secondary signatures of these functional sectors also exist in the extensively-studied large-

eigenvalue modes. Our simple, general model leads us to propose a principled method to

identify functional sectors, along with the magnitudes of mutational effects, from sequence

data. We further demonstrate the robustness of these functional sectors to various forms of

selection, and the robustness of our approach to the identification of multiple selected traits.

Author summary

Proteins play crucial parts in all cellular processes, and their functions are encoded in

their amino-acid sequences. Recently, statistical analyses of protein sequence alignments

have demonstrated the existence of “sectors” of collectively correlated amino acids. What

is the origin of these sectors? Here, we propose a simple underlying origin of protein sec-

tors: they can arise from selection acting on any collective protein property. We find that

the main signature of these functional sectors lies in the low-eigenvalue modes of the

covariance matrix of the selected sequences. A better understanding of protein sectors will

make it possible to discern collective protein properties directly from sequences, as well as

to design new functional sequences, with far-reaching applications in synthetic biology.
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Introduction

Proteins play crucial roles in all cellular processes, acting as enzymes, motors, receptors,

regulators, and more. The function of a protein is encoded in its amino-acid sequence. In evo-

lution, random mutations affect the sequence, while natural selection acts at the level of func-

tion, however our ability to predict a protein’s function directly from its sequence has been

very limited. Recently, the explosion of available sequences has inspired new data-driven

approaches to uncover the principles of protein operation. At the root of these new approaches

is the observation that amino-acid residues which possess related functional roles often evolve

in a correlated way. In particular, analyses of large alignments of protein sequences have

identified “sectors” of collectively correlated amino acids [1–6], which has enabled successful

design of new functional sequences [3]. Sectors are spatially contiguous in the protein struc-

ture, and in the case of multiple sectors, each one may be associated with a distinct role [4, 7].

What is the origin of these sectors, and can we identify them from sequence data in a princi-

pled way?

To address these questions, we developed a general physical model that naturally gives rise

to sectors. Specifically, motivated by the observation that many protein properties reflect addi-

tive contributions from individual amino acids [8–10], we consider any additive trait subject

to natural selection. As a concrete example, we study a simple elastic-network model that

quantifies the energetic cost of protein deformations [11], which we show to be an additive

trait. We then demonstrate that selection acting on any such additive trait automatically

yields collective correlation modes in sequence data. We show that the main signature of the

selection process lies in the small-eigenvalue modes of the covariance matrix of the selected

sequences, but we find that some signatures also exist in the widely-studied large-eigenvalue

modes. Finally, we demonstrate a principled method to identify sectors and to quantify muta-

tional effects from sequence data alone.

Model and methods

Selection on an additive trait

We focus on selection on an additive scalar trait

Tð~aÞ ¼
XL

l¼1

DlðalÞ ; ð1Þ

where~a ¼ ða1; . . . ; aLÞ is the amino-acid sequence considered, L is its length, and Δl(αl) is the

mutational effect on the trait T of a mutation to amino acid αl at site l. Mutational effects can

be measured with respect to a reference sequence~a0, satisfying Dlða
0
l Þ ¼ 0 for all l.

Eq 1 is very general as it amounts to saying that, to lowest order, mutations have an additive

effect on the trait T, which can be any relevant physical property of the protein, say its binding

affinity, catalytic activity, or thermal stability [12]. System-specific details are encoded by the

single-site mutational effects Δl(αl), which can be measured experimentally. The assumption

of additivity is experimentally validated in many cases. For instance, protein thermal stability,

measured through folding free energy, is approximately additive [8, 13]. Importantly, we allow

selection to act on a phenotype that is a nonlinear function of T. Permitting a phenotypic non-

linearity on top of our additive trait model is motivated by the fact that actual phenotype data

from recent high-throughput mutagenesis experiments were accurately modeled via a nonlin-

ear mapping of an underlying additive trait [10].

Protein sectors are usually defined operationally as collective modes of correlations in

amino-acid sequences. However, the general sequence-function relation in Eq 1 suggests an
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operational definition of a functional protein sector, namely as the set of sites with dominant

mutational effects on a trait under selection. Selection can take multiple forms. To be concrete,

we first consider a simple model of selection, assuming a favored value T� of the trait T, and

using a Gaussian selection window. We subsequently show that the conclusions obtained

within this simple model are robust to different forms of selection. Our Gaussian selection

model amounts to selecting sequences according to the following Boltzmann distribution:

Pð~aÞ ¼
expðwð~aÞÞ
P

~a
expðwð~aÞÞ

; ð2Þ

where the fitness wð~aÞ of a sequence is given by

wð~aÞ ¼ �
k

2
ðTð~aÞ � T�Þ2 ¼ �

k

2

XL

l¼1

DlðalÞ � T�
 !2

: ð3Þ

The selection strength κ sets the width of the selection window.

Such selection for intermediate values of a trait can be realistic, e.g. for protein stability [8].

However, the form of selection can vary, for example selection can be for a nonlinear trans-

form of a trait to be above a certain threshold [10], and several relevant selection variants are

investigated below. Crucially, while the trait is additive (Eq 1), the fact that fitness (Eq 3) and

selection (Eq 2) are nonlinear functions of the trait leads to coupling between mutations. This

phenomenon is known as global [10, 14] or nonspecific [9] epistasis, and its relevance has

been shown in evolution experiments [14], over and above contributions from specific epista-

sis [9, 15]. The focus of this paper is on global epistasis, and we do not include specific epistasis.

Studying the interplay of these two types of epistasis will be an interesting future direction.

A toy model yielding a concrete example of an additive trait

Elastic-network model. To illustrate how additive traits naturally arise, we consider the

elastic energy associated with a functionally important protein deformation. We explicitly

derive the additivity of this trait in the regime of small deformations and weak mutational

effects. This concrete example is relevant since functional deformation modes are under selec-

tion in proteins [16–18], and dynamical domains possess a signature in sequence data [19].

Moreover, elastic-network models have elucidated a variety of protein properties [11, 20–22],

including the emergence of allostery [23–29]. Thus motivated, we begin by building an elastic-

network model [11, 20] for a well-studied PDZ protein domain (Fig 1(a) and 1(b)) [30, 31]

and computing the relationship between its “sequence” and the energetic cost of a function-

ally-relevant conformational change.

To build the elastic-network model of the PDZ domain, we replace each of the L = 76

amino-acid residues by its corresponding alpha carbon Cα and beta carbon Cβ, as shown in

Fig 1(b). Every pair of carbons within a cutoff distance dc is then connected with a harmonic

spring [11]. Following a previous analysis of the same PDZ domain [20], we set dc = 7.5 Å and

assign spring constants as follows: a) 2 for Cα-Cα pairs if adjacent along the backbone, 1 other-

wise; b) 1 for Cα-Cβ pairs; c) 0.5 for Cβ-Cβ pairs.

Within our elastic model, the energetic cost of a small deformation from the equilibrium

structure is

E ¼
1

2

X

i;j

ri � r0

i

� �
Mij rj � r0

j

� �
¼

1

2
drTMdr; ð4Þ

where ri is the position of the ith carbon atom, r0
i is its equilibrium position, and the Hessian
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matrix M contains the second derivatives of the elastic energy with respect to atomic coordi-

nates. Here, we take δr to be the conformational change from a ligand-free state (1BFE) to a

ligand-bound state (1BE9) of the same PDZ domain (Fig 1(a)). This conformational change

is central to PDZ function, so its energetic cost has presumably been under selection during

evolution. Any other coherent conformational change would also be suitable for our analysis.

Note that our aim is not to analyze conformational changes in all their richness, but to provide

a minimal concrete example of a relevant additive trait, and to analyze the impact of selection

acting on this trait on the associated family of sequences.

To mimic simply the effect of mutation and selection within our toy model, we introduce

“mutations” of residues that weaken the spring constants involving their beta carbons by a

small fraction �. In practice, we take � = 0.2. We represent mutations using a sequence~S with

Sl 2 {0, 1}, where l is the residue index: Sl = 0 denotes the reference state, while Sl = 1 implies

a mutation (Fig 1(c)). The sequence~S and the spring network fully determine the Hessian

matrix M, and thus the energy cost E of a conformational change (Eq 4). Note that here~S is

a binary sequence, which represents a simplification compared to real protein sequences~a

where each site can feature 21 states (20 amino acids, plus the alignment gap). We start with

the binary model for simplicity, and we then extend our results to a more realistic 21-state

Fig 1. Selection applied to an elastic protein model leads to a statistical signature among sequences. (a) Cartoon representation of the third

PDZ domain of the rat postsynaptic density protein 95 from the RSCB PDB [32] (gray: ligand free, 1BFE; blue: ligand bound, 1BE9 (ligand not

shown)). (b) Elastic network model for 1BFE, where each amino-acid residue is represented by its alpha carbon (Cα, black node) and beta

carbon (Cβ, purple node). Nearby nodes interact through a harmonic spring [20] (S1 Appendix). (c) Relation between protein sequence~S and

elastic network: 0 denotes the reference state, while 1 denotes a mutated residue, which weakens interactions of the corresponding Cβ with all its

neighbors by �. (d) Histogram of the energy δE required to deform the domain from its ligand-free to its ligand-bound conformation, for

randomly sampled sequences where 0 and 1 are equally likely at each site. Sequences are selectively weighted using a narrow Gaussian window

(orange) around δE�. (e) Eigenvalues of the covariance matrix C for the selectively weighted protein sequences. (f) Upper panel: last principal

component n
ðLÞ
l of C (red) and average mutant fraction hSli� (green) at site l after selection; lower panel: effect Δl of a single mutation at site l on

δE. (g) Schematic representation of the selected ensemble in sequence space, where each dot is a highly-weighted sequence; thus dots are

restricted to a narrow region around a plane perpendicular to ~D. (h) Recovery of ~D for all principal components~nðjÞ, with maximum

Recovery = 1 (Eq 8). Gray dashed line: random expectation of Recovery (S1 Appendix).

https://doi.org/10.1371/journal.pcbi.1007010.g001
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model. Note that binary representations of actual protein sequences, with a consensus residue

state and a “mutant” state, have proved useful in sector analysis [4], although more recent

approaches for diverse protein families have employed full 21-state models [7]. Binary repre-

sentations are also appropriate to analyze sets of sufficiently close sequences, notably HIV

proteins, allowing identification of their sectors [5] and predictions of their fitness landscapes

[33].

Deformation energy as an additive trait. Focusing on mutations that weakly perturb the

elastic properties of a protein, we perform first-order perturbation analysis: M = M(0) + �M(1)

+ o(�). Using Eq 4 yields E = E(0) + �E(1) + o(�), with E(1) = δrTM(1)δr/2. Both M(1) and E(1) can

be expressed as sums of contributions from individual mutations. We define Δl as the first-

order energy cost �E(1) of a single mutation at site l of the sequence. To leading order, the effect

of mutations on the energy cost of a deformation reads

dE ¼ E � Eð0Þ ¼
XL

l¼1

SlDl: ð5Þ

This equation corresponds to the binary-sequence case of the general additive trait defined in

Eq 1. Hence, the deformation energy in our toy model of a protein as a sequence-dependent

elastic network constitutes a practical example of an additive trait.

Within our functional definition, a protein sector is the set of sites with dominant muta-

tional effects on the trait under selection. The vector ~D of mutational effects for our elastic-

network model of the PDZ domain is shown in Fig 1(f). The magnitudes of mutational effects

are strongly heterogeneous (Fig. 1 in S1 Appendix). Here, the amino acids with largest effects,

which constitute the sector, correspond to those that move most upon ligand binding. (Note

that the ligand-binding deformation of PDZ is well-described by one low-frequency normal

mode of the elastic network [20]: hence, our sector significantly overlaps with the sites that are

most involved in this mode).

How is such a functionally-defined sector reflected in the statistical properties of the

sequences that survive evolution? To answer this question, we next analyze sequences obtained

by selecting on the trait δE. While for concreteness, we use the mutational effects obtained

from our elastic model, the analysis is general and applies to any additive trait. Indeed, we later

present some examples using synthetically-generated random mutational effect vectors, both

binary and more realistic 21-state ones (see below and S1 Appendix).

Results

Signature of selection in sequences

For our elastic model of the PDZ domain, the distribution of the additive trait δE for random

sequences is shown in Fig 1(d). We use the selection process introduced in Eqs 2 and 3 to limit

sequences to a narrower distribution of δEs, corresponding, e.g., to a preferred ligand-binding

affinity. The fitness of a binary sequence~S, a particular case of Eq 3, reads:

wð~SÞ ¼ �
k

2

XL

l¼1

DlSl � dE
�

 !2

: ð6Þ

Here, the selection strength κ sets the width of the selection window, and δE� is its center. For

all selections, we take k ¼ 10=ð
P

l D
2

l Þ, so that the width of the selection window scales with

that of the unselected distribution. We have confirmed that our conclusions are robust to vary-

ing selection strength, provided k
P

l D
2

l � 1 (see Fig. 3 in S1 Appendix).
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Although mutations have additive effects on the trait δE, the nonlinearities involved in fit-

ness and selection give rise to correlations among sites. For instance, if δE� = 0 and if Δl< 0

for all l, as in Fig 1, a mutation at a site with large |Δl| will decrease the likelihood of additional

mutations at all other sites with large |Δl|.

Previous approaches to identifying sectors from real protein sequences have relied on mod-

ified forms of Principal Component Analysis (PCA). So we begin by asking: can PCA identify

sectors in our physical model? PCA corresponds to diagonalizing the covariance matrix C of

sequences: it identifies the principal components (eigenvectors)~nðjÞ associated with progres-

sively smaller variances (eigenvalues) λ(j). We introduce h�i� to denote ensemble averages over

the selectively weighted sequences, reserving h�i for averages over the unselected ensemble.

The mutant fraction at site l in the selected ensemble is hSli� ¼
P

~SSlPð~SÞ, and the covariance

matrix C reads

Cll0 ¼
D
ðSl � hSli�Þ � ðSl0 � hSl0 i�Þ

E

�
: ð7Þ

To test the ability of PCA to identify a functional sector, we employed the selection window

shown in orange in Fig 1(d). The resulting eigenvalues are shown in Fig 1(e). One sees outliers.

In particular, why is the last eigenvalue so low? Due to the narrow selection window, according

to Eq 6 the highly-weighted sequences satisfy
P

l SlDl ¼
~S � ~D � dE�. This means that in the L-

dimensional sequence space, the data points for the highly-weighted sequences lie in a narrow

region around a plane perpendicular to ~D (Fig 1(g)). Hence, the data has exceptionally small

variance in this direction, leading to a particularly small eigenvalue of C. Moreover, the corre-

sponding last principal component~nðLÞ points in the direction with the smallest variance and is

consequently parallel to ~D (Fig 1(f)). Formally, in Eq 6, ~D appears in a quadratic coupling term

where it plays the part of a repulsive pattern in a generalized Hopfield model [34, 35]: alone,

such a term would penalize sequences aligned with ~D. But here, ~D also appears in a term linear

in~S and as a result Eq 6 penalizes sequences that fail to have the selected projection onto ~D.

In this example, the last principal component accurately recovers the functional sector cor-

responding to the largest elements of the mutational-effect vector ~D. More generally, to quan-

tify the recovery of ~D by a given vector~n, we introduce

Recovery ¼
P

ljnlDlj
ffiffiffiffiffiffiffiffiffiffiP

ln
2
l

p ffiffiffiffiffiffiffiffiffiffiffiP
lD

2

l

q ; ð8Þ

which is nonnegative, has a random expectation of ð
ffiffiffiffiffiffiffiffiffiffiffi
2=pL

p
Þ
P

ljDlj=

ffiffiffiffiffiffiffiffiffiffiffiffiP
l D

2

l

q

for L� 1 (S1

Appendix), and saturates at 1 (including the case of parallel vectors). For our test case, Fig 1(h)

shows Recovery for all principal components. The last one features the highest Recovery,

almost 1, confirming that it carries substantial information about ~D. The second-to-last princi-

pal component and the first two also provide a value of Recovery substantially above random

expectation. Outlier eigenvalues arise from the sector, and accordingly, we find that the num-

ber of modes with high Recovery often corresponds to the number of sites with strong muta-

tional effects. A more formal analysis of this effect will be an interesting topic for further study.

In our model, ~D is fundamentally a direction of small variance. So why do the first principal

components also carry information about ~D? Qualitatively, when variance is decreased in one

direction due to a repulsive pattern ~D, variance tends to increase in orthogonal directions

involving the same sites. To illustrate this effect, let L = 3 and ~D ¼ ð� 1; 1; 0Þ, and consider the

Revealing evolutionary constraints on proteins through sequence analysis
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sequences~S satisfying ~D �~S ¼ 0 (namely (0, 0, 0); (1, 1, 0); (0, 0, 1); (1, 1, 1)). The last principal

component is ~D, with zero variance, and the first principal component is (1, 1, 0): Recovery

is 1 for both of them. This selection conserves the trace of the covariance matrix (i.e. the total

variance), so that decreasing the variance along ~D ¼ ð� 1; 1; 0Þ necessarily increases it along

(1, 1, 0). This simple example provides an intuitive understanding of why the large-eigenvalue

modes of the covariance matrix also carry information about ~D.

It is worth remarking that Eq 6 is a particular case of a general fitness function with one-

and two-body terms (known as fields and couplings in Ising or Potts models in physics). Here,

the values of these one- and two-body terms are constrained by their expressions in terms

of ~D. In practice, several traits might be selected simultaneously (see below), yielding more

independent terms among the fields and couplings. More generally, such one- and two-body

descriptions have been very successfully employed via Direct Coupling Analysis (DCA) to

identify strongly coupled residues that are in contact within a folded protein [36–38], to inves-

tigate folding [39], and to predict fitness [33, 40–45] and conformational changes [46, 47], as

well as protein-protein interactions [48, 49]. A complete model of protein covariation in nature

should necessarily incorporate both the collective modes described here and the strongly cou-

pled residue pairs which are the focus of DCA.

ICOD method

An important concern is whether the last principal component is robust to small and/or noisy

datasets. Indeed, other directions of small variance can appear in the data. As a second exam-

ple, we applied a different selection window, centered in the tail of the distribution of δEs from

our elastic model of the PDZ domain (Fig 2(a), inset). This biased selection generates strong

conservation, hSli� � 1, for some sites with significant mutational effects. Extreme conserva-

tion at one site now dictates the last principal component, and disrupts PCA-based recovery of

~D (Fig 2(a) and 2(b)).

To overcome this difficulty, we developed a more robust approach that relies on inverting

the covariance matrix. Previously, the inverse covariance matrix was successfully employed

in Direct Coupling Analysis (DCA) to identify strongly coupled residues that are in contact

within a folded protein [36–38]. The fitness in our model (Eq 6) involves one and two-body

interaction terms, and constitutes a particular case of the DCA Hamiltonian (S1 Appendix). A

small-coupling approximation [37, 38, 50, 51] (S1 Appendix) gives

C� 1

ll0 � 1 � dll0ð Þ kDlDl0 þ dll0
1

Pl
þ

1

1 � Pl

� �

; ð9Þ

where Pl denotes the probability that site l is mutated. Since we are interested in extracting ~D,

we can simply set to zero the diagonal elements of C−1, which are dominated by conservation

effects, to obtain a new matrix

~C � 1

ll0 � ð1 � dll0 ÞkDlDl0 : ð10Þ

The first eigenvector of ~C � 1 (associated with its largest eigenvalue) should accurately report ~D

since, except for its zero diagonal, ~C � 1 is proportional to the outer product ~D � ~D. We call this

approach the Inverse Covariance Off-Diagonal (ICOD) method. As shown in Fig 2(d) and 2(e),

ICOD overcomes the difficulty experienced by PCA for biased selection, while performing

equally well as PCA for unbiased selection (Fig. 2 in S1 Appendix). Removing the diagonal ele-

ments of C−1 before diagonalizing is crucial: otherwise, the first eigenvector of C−1 is the same

Revealing evolutionary constraints on proteins through sequence analysis
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as the last eigenvector of C and suffers from the same shortcomings for strong conservation.

Here too, eigenvectors associated to both small and large eigenvalues contain information

about ~D (Fig 2(b) and 2(d)).

Selection on multiple traits

An important challenge in sector analysis is distinguishing multiple, independently evolving

sectors [4, 7, 52]. We can readily generalize our fitness function (Eqs 3 and 6) to allow for selec-

tion on multiple additive traits:

wð~SÞ ¼ �
XN

i¼1

ki

2

XL

l¼1

Di;lSl � T�i

 !2

; ð11Þ

where N is the number of distinct additive traits Tið
~SÞ ¼

P
l Di;lSl under selection, ~Di is the

vector of mutational effects on trait Ti, κi is the strength of selection on this trait, and T�i is the

associated selection bias. For example, ~D1 might measure how mutations change a protein’s

binding affinity, while ~D2 might be related to its thermal stability, etc.

Fig 2. Recovery of mutational-effect vector ~D from sequence analysis in the case of strongly biased selection. (a-c)

Principal Component Analysis (PCA) performs poorly due to strong conservation at some sites of large mutational

effect. (a) Eigenvalues of covariance matrix obtained for strongly biased selection around dE�biased (inset, orange

window) for same model proteins as in Fig 1. (b) Recovery of ~D for all principal components. (c) Last principal

component n
ðLÞ
l (red) and average mutant fraction hSli� (green) at site l. (d-e) The ICOD method performs robustly. (d)

Eigenvalues of ~C � 1
ll0 (Eq 10) (upper) and Recovery of ~D for all eigenvectors (lower). (e) Leading eigenvector n

ð1Þ

l (upper)

and mutational effect Δl at site l (lower, same as in Fig 1(f)). Gray dashed lines in (b, d): random expectation of

Recovery (S1 Appendix).

https://doi.org/10.1371/journal.pcbi.1007010.g002
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In Fig. 5 in S1 Appendix, we consider selection on two distinct additive traits, using syn-

thetically-generated random mutational-effect vectors ~D1 and ~D2 (S1 Appendix). Note that

these mutational effects are thus unrelated to our toy model of protein elastic deformations: as

stated above, our approach holds for any additive trait under selection. ICOD then yields two
large outlier eigenvalues of the modified inverse covariance matrix ~C � 1. The associated eigen-

vectors accurately recover both ~D1 and ~D2, after a final step of Independent Component Anal-

ysis (ICA) [7, 53, 54] that successfully disentangles the contributions coming from the two

constraints (see S1 Appendix).

Performance in sector recovery

We further tested the performance of ICOD by systematically varying the selection bias, both

for our toy model of PDZ elastic deformations and for more general synthetically-generated

random mutational-effect vectors (Fig 3). ICOD achieves high Recovery of these various muta-

tional-effect vectors for both single and double selection over a broad range of selection biases

T�, albeit performance falls off in the limit of extreme bias.

How does ICOD compare with other approaches to identifying sectors? We compared

the performance of ICOD with Statistical Coupling Analysis (SCA), the original PCA-based

method [4, 7]. In SCA, the covariance matrix C is reweighted by a site-specific conservation

factor ϕl, the absolute value is taken, ~CðSCAÞll0 ¼ j�lCll0�l0 j, and sectors are identified from the

leading eigenvectors of ~CðSCAÞ. We therefore tested the ability of the first eigenvector of ~CðSCAÞ

to recover ~D for a single selection. We found that the square root of the elements of the first

SCA eigenvector can provide high Recovery of ~D (Fig 3, and Figs. 13, 14 in S1 Appendix).

However, the performance of SCA relies on conservation through ϕl, and it has been shown

that residue conservation actually dominates sector identification by SCA in certain proteins

[52]. Consequently, for unbiased selection, SCA breaks down (Fig 3(a), dashed curves) and

cannot identify sector sites (Fig. 17 in S1 Appendix). ICOD does not suffer from such

Fig 3. Average recovery of mutational-effect vectors ~D as a function of relative selection bias g � ðT� � hTiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðT � hTiÞ2i
q

on the selected additive trait T. (a) Selection on a single trait. Different ~Ds are used to generate

sequence ensembles: the elastic-network ~D from Fig 1 (red); synthetic ~Ds (S1 Appendix) with number of sites of large

mutational effect (sector sites) ranging from 1 to 100, for sequences of length L = 100 (blue). Recovery is shown for

ICOD (solid curves) and for SCA [4, 7] (dashed curves). (b) Selection on two distinct traits. Different pairs of synthetic

~Ds (S1 Appendix) are used to generate sequence ensembles (with L = 100): “0%” indicates two non-overlapping

sectors, each with 20 sites; “100%” indicates two fully overlapping sectors, each with 100 sites; “Aver.” indicates average

Recovery over 100 cases of double selection, where the single-sector size increases from 1 to 100, and the overlap

correspondingly increases from 0 to 100. ICA was applied to improve Recovery (S1 Appendix).

https://doi.org/10.1371/journal.pcbi.1007010.g003
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shortcomings, and performs well over a large range of selection biases. Note that in SCA, only

the top eigenvectors of ~CðSCAÞ convey information about sectors (Figs. 13, 15 in S1 Appendix).

We also compared ICOD with another PCA-based approach [34], which employs an infer-

ence method specific to the generalized Hopfield model, and should thus be well adapted to

identifying sectors within our physical model (Eq 6). Overall, this specialized approach per-

forms similarly to ICOD, being slightly better for very localized sectors, but less robust than

ICOD for strong selective biases and small datasets (S1 Appendix). Exactly as for PCA and

ICOD, within this method, the top Recovery is obtained for the bottom eigenvector of the

(modified) covariance matrix, consistent with ~D in our model being a repulsive pattern [34],

but large Recoveries are also obtained for the top eigenvectors (Fig. 18 in S1 Appendix).

Robustness to different forms of selection

To assess the robustness of functional sectors to selections different from the simple Gauss-

ian selection window of Eqs 2 and 3, we selected sequences with an additive trait T above a

threshold Tt, and varied this threshold. For instance, a fluorescent protein might be selected

to be fluorescent enough, which could be modeled by requiring that (a nonlinear transform

of) an additive trait be sufficiently large [10]. As shown in Fig 4, the corresponding sectors

are identified by ICOD as well as those resulting from our initial Gaussian selection window.

Fig 4. Identification of sectors that result from threshold-based selection. (a) Histogram of the additive trait

Tð~SÞ ¼~S � ~D for randomly sampled sequences where 0 and 1 are equally likely at each site. Sequence length is L = 100,

mutational effects are synthetically generated with 20 sector sites (see S1 Appendix). Sequences are selected if they have

a trait value Tð~SÞ > Tt (orange shaded region). Selection is shown for Tt = hTi, or equivalently γt = 0, in terms of the

relative threshold gt � ðTt � hTiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðT � hTiÞ2i
q

. (b) Eigenvalues of the ICOD-modified inverse covariance matrix

~C � 1 (Eq 10) of the selected sequences for γt = 0. (c) Recovery of ~D for all eigenvectors of ~C � 1 for γt = 0. Gray dashed

line: random expectation of Recovery. (d) Recovery of ~D for ICOD and for SCA as functions of the relative selection

threshold γt. The data in (d) is averaged over 100 realizations of ~D.

https://doi.org/10.1371/journal.pcbi.1007010.g004
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In Fig 4(d), we show the performance of both ICOD and SCA at recovering sectors arising

from selection with a threshold. Consistent with previous results (see Fig 3), we find that

ICOD is more robust than SCA to extreme selections. We also successfully applied ICOD to

other forms of selection: Fig. 8 in S1 Appendix shows the case of a quartic fitness function

replacing the initial quadratic one (Eq 3) in the Boltzmann distribution (Eq 2) and Fig. 9 in

S1 Appendix shows the case of a rectangular selection window (S1 Appendix). These results

demonstrate the robustness of functional sectors, and of ICOD, to different plausible forms

of selection.

Extension to 21-state sequences and to natural sequences

So far, we have considered binary sequences, with only one type of mutation with respect to

the reference state. In the S1 Appendix, we demonstrate that our formalism, including the

ICOD method, extends to mutations among q different states. The case q = 21, which includes

the 20 different amino-acid types plus the alignment gap is the relevant one for real proteins.

The single-site mutational effects Δl are then replaced by state-specific mutational effects Δl(αl)
with αl 2 {1, . . ., 21} (see Eq 1). Fig. 10 in S1 Appendix shows that the generalized version of

ICOD performs very well on synthetic data generated for the case q = 21. We further demon-

strate that sector identification is robust to gauge changes (reference changes) and to the use of

pseudocounts (S1 Appendix).

While the main purpose of this article is to propose an operational definition of functional

protein sectors and to understand how they can arise, an interesting next question will be to

investigate what ICOD can teach us about real data. As a first step in this direction, we applied

ICOD to a multiple sequence alignment of PDZ domains. In this analysis, we employed a com-

plete description with q = 21, but we compressed the ICOD-modified inverse matrix using

the Frobenius norm to focus on overall (and not residue-specific) mutational effects (see S1

Appendix for details). As shown in Fig 5(a) and 5(b), both ICOD and SCA identify one strong

outlying large eigenvalue, thus confirming that PDZ has only one sector [6]. Recall that due to

the inversion step, the largest eigenvalue in ICOD is related to the mode with smallest variance,

whose importance was demonstrated above. Furthermore, as seen in Fig 5(c) and 5(d), both

methods correctly predict the majority of residues found experimentally to have important

mutational effects on ligand binding to the PDZ domain shown in Fig 1(a) [6]. For instance,

over the 20 top sites identified by ICOD (resp. SCA), we find that 85% (resp. 75%) of them are

also among the 20 experimentally most important sites. Note that for SCA, we recover the

result from Ref. [6]. The performance of ICOD is robust to varying the cutoff for removal of

sites with a large proportion of gaps (see Fig. 21 in S1 Appendix), but notably less robust than

SCA to pseudocount variation (see Fig. 22 in S1 Appendix).

Importantly, both ICOD and SCA perform much better than random expectation, which is

29%. Hence, both of these methods can be useful to identify functionally important sites. The

slightly greater robustness of SCA to pseudocounts on this particular dataset (see Fig. 22 in S1

Appendix) might come from the fact that many of the experimentally-identified functionally

important sites in the PDZ domain are strongly conserved [52], which makes the conservation

reweighting step in SCA advantageous. Since residue conservation alone is able to predict

most of the experimentally important PDZ sites [52], we also compared conservation to SCA

and ICOD: ranking sites by conservation (employing the conservation score of Ref. [7], see S1

Appendix) indeed identifies 70% of the top 20 experimentally-determined sites with important

mutational effects. Interestingly, ICOD scores are slightly more strongly correlated with con-

servation than SCA scores are correlated with conservation (see Fig. 23 in S1 Appendix),

despite the fact that conservation is explicitly used in SCA and not in ICOD.
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Overall, this preliminary application to real data highlights the ability of ICOD to identify

functionally related amino acids in a principled way that only relies on covariance. We empha-

size that the main goal of this paper is to provide insight into the possible physical origins of

sectors, and into the statistical signatures of these physical sectors in sequence data. A more

extensive application of ICOD and related methods to real sequence data will be the subject of

future work.

Discussion

We have demonstrated how sectors of collectively correlated amino acids can arise from evolu-

tionary constraints on functional properties of proteins. Our model is very general, as it only

relies on the functional property under any of various forms of selection being described by an

underlying additive trait, which has proven to be valid in many relevant situations [8–10, 13].

We showed that the primary signature of functional selection acting on sequences lies in

the small-eigenvalue modes of the covariance matrix. In contrast, sectors are usually identified

from the large-eigenvalue modes of the SCA matrix [4, 7]. This is not in contradiction with

our results because, as we showed, signatures of our functional sectors are often also found in

Fig 5. Performance of ICOD and SCA at predicting the 20 sites with largest experimentally-determined

mutational effects in a PDZ domain. (a) Eigenvalues of the compressed ICOD-modified inverse covariance matrix
~C � 1 (S1 Appendix). (b) Eigenvalues of the SCA matrix. (c) True Positive (TP) rates obtained by taking the first

eigenvector~nð1Þ from the compressed ICOD-modified inverse covariance matrix, generating a ranked list of sites of

descending magnitudes of the components jjn
ð1Þ

l jj of this eigenvector at each site l (S1 Appendix), and computing the

fraction of the top sites in this predicted ordering that are also among the 20 experimentally most important sites [6].

Results are shown versus the number of top predicted sites (“count”). (d) TP rates from SCA, computed as in panel (c).

In panels (c) and (d), the TP rate values obtained for the top 20 predicted sites are indicated by arrows. In all panels, a

pseudocount ratio Λ = 0.02 was used, and sites with more than 15% gap state were discarded (see S1 Appendix for

details).

https://doi.org/10.1371/journal.pcbi.1007010.g005
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large-eigenvalue modes of the covariance matrix. Besides, the construction of the SCA matrix

from the covariance matrix involves reweighting by conservation and taking an absolute value

or a norm [4, 7], which can substantially modify its eigenvectors, eigenvalues, and their order.

Conservation is certainly important in real proteins, especially in the presence of phylogeny;

indeed, the SCA matrix, which includes both conservation and covariance, was recently found

to capture well experimentally-measured epistasis with respect to the free energy of PDZ

ligand binding [55]. However, the fundamental link we propose between functional sectors

and small-eigenvalue modes of the covariance matrix is important, since large-eigenvalue

modes of the covariance matrix also contain confounding information about subfamily-spe-

cific residues [56] and phylogeny [57], and consistently, some sectors identified by SCA have

been found to reflect evolutionary history rather than function [4]. Interestingly, the small-

eigenvalue modes are also the ones that contain most information about structural contacts in

real proteins [35]. Hence, our results help explain previously observed correlations between

sectors and contacts, e.g. the fact that contacts are overrepresented within a sector but not

across sectors [58].

We introduced a principled method to detect functional sectors from sequence data, based

on the primary signature of these sectors in the small-eigenvalue modes of the covariance

matrix. We further demonstrated the robustness of our approach to the existence of multiple

traits simultaneously under selection, to various forms of selection, and to data-specific ques-

tions such as reference choices and pseudocounts.

Importantly, our modeling approach allowed us to focus on functional selection alone, in the

absence of historical contingency and of specific structural constraints, thus yielding insights

complementary to purely data-driven methods. The collective modes investigated here are just

one source of residue-residue correlations. Next, it will be interesting to study the intriguing

interplay between functional sectors, phylogeny, and contacts, and to apply our methods to

multiple protein families. Our results shed light on an aspect of the protein sequence-function

relationship and open new directions in protein sequence analysis, with implications in syn-

thetic biology, building toward function-driven protein design.

Supporting information

S1 Appendix. Methodological details and further results. In S1 Appendix, we present addi-

tional details about our model and methods, as well as additional results.
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